DOI QR코드

DOI QR Code

Purification, Characterization, and Cloning of a Cold-Adapted Protease from Antarctic Janthinobacterium lividum

  • Kim, Hyun-Do (Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials, Chonnam National University) ;
  • Kim, Su-Mi (Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials, Chonnam National University) ;
  • Choi, Jong-Il (Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials, Chonnam National University)
  • Received : 2017.11.03
  • Accepted : 2017.12.02
  • Published : 2018.03.28

Abstract

In this study, a 107 kDa protease from psychrophilic Janthinobacterium lividum PAMC 26541 was purified by anion-exchange chromatography. The specific activity of the purified protease was 264 U/mg, and the overall yield was 12.5%. The J. lividum PAMC 25641 protease showed optimal activity at pH 7.0-7.5 and $40^{\circ}C$. Protease activity was inhibited by PMSF, but not by DTT. On the basis of the N-terminal sequence of the purified protease, the gene encoding the cold-adapted protease from J. lividum PAMC 25641 was cloned into the pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3) as an intracellular soluble protein.

Keywords

References

  1. Margesin R, Feller G. 2010. Biotechnological applications of psychrophiles. Environ. Technol. 31: 835-844. https://doi.org/10.1080/09593331003663328
  2. Javed A, Qazi JI. 2016. Psychrophilic microbial enzymes implications in coming biotechnological processes. Am. Sci. Res. J. Eng. Technol. Sci. 23: 103-120.
  3. Mienda B S, Yahya A, Galadima IA, S hamsir MS. 2014 . An overview of microbial proteases for industrial applications. Res. J. Pharm. Biol. Chem. Sci. 5: 388-396.
  4. Vazquez SC, Coria SH, Mac Cormack WP. 2004. Extracellular proteases from eight psychrotolerant Antarctic strains. Microbiol. Res. 159: 157-166. https://doi.org/10.1016/j.micres.2004.03.001
  5. Joshi S, Satyanarayana T. 2013. Biotechnology of cold-active proteases. Biology 2: 755-783. https://doi.org/10.3390/biology2020755
  6. Zhang H, Mu H, Mo Q, Sun T, Liu Y, Xu M, et al. 2016. Gene cloning, expression and characterization of a novel cold-adapted protease from Planococcus sp. J. Mol. Catal. B Enzym. 130: 1-8. https://doi.org/10.1016/j.molcatb.2016.04.002
  7. Vazquez S, Ruberto L, Mac Cormack W. 2005. Properties of extracellular proteases from three psychrotolerant Stenotrophomonas maltophilia isolated from Antarctic soil. Polar Biol. 28: 319-325. https://doi.org/10.1007/s00300-004-0673-6
  8. Zhu HY, Tian Y, Hou YH, Wang TH. 2009. Purification and characterization of the cold-active alkaline protease from marine cold-adaptive Penicillium chrysogenum FS010. Mol. Biol. Rep. 36: 2169-2174. https://doi.org/10.1007/s11033-008-9431-0
  9. Oh KH, Seong CS, Lee SW, Kwon OS, Park YS. 1999. Isolation of a psychrotrophic Azospirillum sp. and characterization of its extracellular protease. FEMS Microbiol. Lett. 174: 173-178.
  10. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  11. Gradisar H, Friedrich J, Krizaj I, Jerala R. 2005. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol. 71: 3420-3426. https://doi.org/10.1128/AEM.71.7.3420-3426.2005
  12. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  13. Kim HD, Choi J. 2014. Effect of temperature on growth rate and protease activity of Antarctic microorganisms. Microbiol. Biotechnol. Lett. 42: 293-296
  14. Zhang H, Zhang B, Zheng Y, Shan A, Cheng B. 2014. Neutral protease expression and optimized conditions for the degradation of blood cells using recombinant Pichia pastoris. Int. Biodeterior. Biodegradation 93: 235-240. https://doi.org/10.1016/j.ibiod.2014.05.024
  15. Kobayashi T, Lu J, Li Z, Hung VS, Kurata A, Hatada Y, et al. 2007. Extremely high alkaline protease from a deep-subsurface bacterium, Alkaliphilus transvaalensis. Appl. Microbiol. Biotechnol. 75: 71-80. https://doi.org/10.1007/s00253-006-0800-0
  16. Kasana RC, Yadav SK. 2007. Isolation of a psychrotrophic Exiguobacterium sp. SKPB5 (MTCC 7803) and characterization of its alkaline protease. Curr. Microbiol. 54: 224-229. https://doi.org/10.1007/s00284-006-0402-1
  17. Johnvesly B, Naik GR. 2001. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochem. 37: 139-144.
  18. Wang QF, Hou YH, Xu Z, Miao JL, Li GY. 2008. Purification and properties of an extracellular cold-active protease from the psychrophilic bacterium Pseudoalteromonas sp. NJ276. Biochem. Eng. J. 38: 362-368. https://doi.org/10.1016/j.bej.2007.07.025
  19. Yadav SK, Bisht D, Tiwari S, Darmwal NS. 2015. Purification, biochemical characterization and performance evaluation of an alkaline serine protease from Aspergillus flavus MTCC 9952 mutant. Biocatal. Agric. Biotechnol. 4: 667-677.
  20. Li F, Yang L, Lv X, Liu D, Xia H, Chen S. 2016. Purification and characterization of a novel extracellular alkaline protease from Cellulomonas bogoriensis. Protein Express. Purif. 121: 125-132. https://doi.org/10.1016/j.pep.2016.01.019
  21. Mechri S, Berrouina MBE, Benmrad MO, Jaouadi NZ, Rekik H, Moujehed E, et al. 2017. Characterization of a novel protease from Aeribacillus pallidus strain VP3 with potential biotechnological interest. Int. J. Biol. Macromol. 94: 221-232. https://doi.org/10.1016/j.ijbiomac.2016.09.112

피인용 문헌

  1. Enzymes from Marine Polar Regions and Their Biotechnological Applications vol.17, pp.10, 2018, https://doi.org/10.3390/md17100544