DOI QR코드

DOI QR Code

Effect of Heat Treatment on Microstructure and Fracture Behavior of STS304-Zr Alloys for Metal Waste Forms

금속고화체용 STS304-Zr 합금의 미세조직과 파괴거동에 미치는 열처리의 영향

  • Kim, Jongwoo (School of Materials Science and Engineering, University of Ulsan) ;
  • Jang, Seon Ah (Pyroprocess Technology Division Korea Atomic Energy Research Institute) ;
  • Han, Seung Youb (Pyroprocess Technology Division Korea Atomic Energy Research Institute) ;
  • Park, Hwan Seo (Pyroprocess Technology Division Korea Atomic Energy Research Institute) ;
  • Lee, Junghoon (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ;
  • Lee, Sunghak (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ;
  • Kwon, Yongjai (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jung Gu (School of Materials Science and Engineering, University of Ulsan) ;
  • Shin, Sang Yong (School of Materials Science and Engineering, University of Ulsan)
  • 김종우 (울산대학교 첨단소재공학부) ;
  • 장선아 (한국원자력연구원 파이로기술실증연구부) ;
  • 한승엽 (한국원자력연구원 파이로기술실증연구부) ;
  • 박환서 (한국원자력연구원 파이로기술실증연구부) ;
  • 이정훈 (포항공과대학교 항공재료연구센터) ;
  • 이성학 (포항공과대학교 항공재료연구센터) ;
  • 권용재 (울산대학교 첨단소재공학부) ;
  • 이정구 (울산대학교 첨단소재공학부) ;
  • 신상용 (울산대학교 첨단소재공학부)
  • Received : 2018.01.12
  • Accepted : 2018.02.14
  • Published : 2018.03.27

Abstract

Three kinds of STS304-Zr alloys were fabricated by varying the Zr content, and their microstructure and fracture properties were analyzed. Moreover, we performed heat treatment to improve their properties and studied their microstructure and fracture properties. The microstructure of the STS304-Zr alloys before and after the heat treatment process consisted of ${\alpha}-Fe$ and intermetallics: Zr(Cr, Ni, Fe)2 and Zr6Fe23. The volume fraction of the intermetallics increased with an increasing Zr content. The 11Zr specimen exhibited the lowest hardness and fine dimples and cleavage facets in a fractured surface. The 15Zr specimen had high hardness and fine cleavage facets. The 19Zr specimen had the highest hardness and large cleavage facets. After the heat treatment process, the intermetallics were spheroidized and their volume fraction increased. In addition, the specimens after the heat treatment process, the Laves phase (Zr(Cr, Ni, Fe) 2) decreased, the Zr6Fe23 phase increased and the Ni concentration in the intermetallics decreased. The hardness of all the specimens after the heat treatment process decreased because of the dislocations and residual stresses in ${\alpha}-Fe$, and the fine lamellar shaped eutectic microstructures changed into large ${\alpha}-Fe$ and spheroidized intermetallics. The cleavage facet size increased because of the decomposition of the fine lamellar-shaped eutectic microstructures and the increase in spheroidized intermetallics.

Keywords

References

  1. N. Das, G. Abraham, P. Sengupta, Ashok Arya, V. Kain and G. K. Dey, J. Nucl. Mater., 467, 489 (2015). https://doi.org/10.1016/j.jnucmat.2015.09.058
  2. M-S. Yim and K. Linga Murty, JOM, 52, 26 (2000).
  3. N. Tsoulfanidis and R. G. Cochran, Nucl. Technol., 93, 263 (1991). https://doi.org/10.13182/NT91-A34525
  4. R. O. Abdel Rahman, R. Z. Rakhimov, N. R. Rakhimova and M. I. Ojovan, Cementitious Materials for Nuclear Waste Immobilization, ASTM Stand. Pract. C 1174 (1991).
  5. D. D. Keiser Jr, D. P. Abraham, W. Sinkler, J. W. Richardson Jr and S. M. McDeavitt, J. Nucl. Mater., 279, 234 (2000). https://doi.org/10.1016/S0022-3115(00)00002-7
  6. S. M. McDeavitt, J. Y. Park and J. P. Ackerman, ANL/CMT/CP-80022.
  7. S. M. McDeavitt, D. P. Abraham, J. Y. Park and D. D. Keiser Jr, JOM, 49, 29 (1997).
  8. S. M. McDeavitt, D. P. Abraham and J. Y. Park, J. Nucl. Mater., 257, 21 (1998). https://doi.org/10.1016/S0022-3115(98)00433-4
  9. J. P. Ackerman, T. R. Johnson, L. S. Chow, E. L. Carls, W. H. Hannum and J. J. Laidler, Prog. Nucl. Energy, 31, 141 (1997). https://doi.org/10.1016/0149-1970(96)00008-X
  10. J. P. Ackerman, L. S. H. Chow, S. M. McDeavitt, C. Pereira and R. H. Woodman, JOM, 49, 26 (1997).
  11. M. A. Lewis, D. F. Fischer and C. D. Murphy, Mater. Res. Soc. Symp. Proc., 333, 95 (1994).
  12. C. Pereira, M. C. Hash, M. A. Lewis, M. K. Richmann, JOM, 49, 34 (1997).
  13. M. C. Hash, C. Pereira, M. A. Lewis, R. J. Blaskovitz and J. P. Ackerman, American Ceramic Society, Westerville, OH, 135 (1996).
  14. C. C. Mcpheeters, R. D. Pierce and T. P. Mulcahey, Prog. Nucl. Energy, 31, 175 (1997). https://doi.org/10.1016/0149-1970(96)00010-8
  15. M. F. Simpson and P. Sachdev, Nucl. Eng. Technol., 40, 175 (2008). https://doi.org/10.5516/NET.2008.40.3.175
  16. J. J. Laidler, J. E. Battles, W. E. Miller, J. P. Ackerman and E. L. Carls, Prog. Nucl. Energy, 31, 131 (1997). https://doi.org/10.1016/0149-1970(96)00007-8
  17. L. R. Bairi, S. Ningshen, U. Kamachi Mudali and Baldev Raj, Corros. Sci., 52, 2291 (2010).
  18. D. P. Abraham, S. M. McDeavitt and J. Park, Metall. Mater. Trans. A, 27, 2151 (1996). https://doi.org/10.1007/BF02651870
  19. S. M. McDeavitt, G. W. Billings and J. E. Indacochea, J. Mater. Sci., 37, 3765 (2002). https://doi.org/10.1023/A:1016581829824
  20. D. P. Abraham, J. W. Richardson Jr. and S. M. McDeavitt, Mater. Sci. Eng. A Struct. Mater., 239-240, 658 (1997). https://doi.org/10.1016/S0921-5093(97)00649-7
  21. J. P. Ackerman, C. Pereira, S. M. McDeavitt and L. Simpson, ANL/CMT/CP-954836.
  22. D. D. Keiser Jr, D. P. Abraham and J. W. Richardson Jr, J. Nucl. Mater., 277, 333 (2000).
  23. R. P. Elliot and W. Rostoker, Trans. ASTM, 50, 617 (1958).
  24. X. Y. Meng and D. O. Northwood, J. Less Common Met., 125, 33 (1986). https://doi.org/10.1016/0022-5088(86)90078-0
  25. P. Nash and C. S. Jayanath, Bull. Alloy Phase Diagrams, 5, 144 (1984). https://doi.org/10.1007/BF02868950
  26. O. Canet, M. Latroche, F. Bouree-Vigneron and A. Percheron- Guegan, J. Alloys Compd., 210, 129 (1994). https://doi.org/10.1016/0925-8388(94)90127-9
  27. D. P. Abraham J. W. Richardson Jr. and S. M. McDeavitt, Scripta Mater., 37, 239 (1997). https://doi.org/10.1016/S1359-6462(97)00074-2