DOI QR코드

DOI QR Code

Bacteriophages: A New Weapon for the Control of Bacterial Blight Disease in Rice Caused by Xanthomonas oryzae

  • Ranjani, Pandurangan (Centre for Advanced Studies in Botany, University of Madras, Guindy Campus) ;
  • Gowthami, Yaram (Department of Plant Pathology, International Institute of Biotechnology and Toxicology (IIBAT)) ;
  • Gnanamanickam, Samuel S (Centre for Advanced Studies in Botany, University of Madras, Guindy Campus) ;
  • Palani, Perumal (Centre for Advanced Studies in Botany, University of Madras, Guindy Campus)
  • Received : 2018.07.13
  • Accepted : 2018.09.10
  • Published : 2018.12.28

Abstract

Xanthomonas oryzae, a bacterial pathogen causing leaf blight disease (BLB) in rice, can cause widespread disease and has caused epidemics globally, resulting in severe crop losses of 50% in Asia. The pathogen is seed-borne and is transmitted through seeds. Thus, control of BLB requires the elimination of the pathogen from seeds. Concern about environment-friendly organic production has spurred improvements in a variety of biological disease control methods, including the use of bacteriophages, against bacterial plant pathogens. The present study explored the potential of bacteriophages isolated from diseased plant leaves and soil samples in killing the bacterial pathogen in rice seeds. Eight different phages were isolated and evaluated for their bacteriolytic activity against different pathogenic X. oryzae strains. Of these, a phage designated ${\varphi}XOF4$ killed all the pathogenic X. oryzae strains and showed the broadest host range. Transmission electron microscopy of ${\varphi}XOF4$ revealed it to be a tailed phage with an icosahedral head. The virus was assigned to the family Siphoviridae, order Caudovirales. Seedlings raised from the seeds treated with $1{\times}10^8pfu/ml$ of ${\varphi}XOF4$ phage displayed reduced incidence of BLB disease and complete bacterial growth inhibition. The findings indicate the potential of the ${\varphi}XOF4$ phage as a potential biological control agent against BLB disease in rice.

Keywords

References

  1. Swings J, Van Den Mooter M, Vauterin L, Hoste B, Gillis M, Mew TW, et al. 1990. Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacteria, leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. rev. Int. J. Syst. Bacteriol. 40: 301-311.
  2. Ou SH. 1985. Rice Disease. pp.380. 2nd ed. Commonwealth Mycological Institute, Kew, England.
  3. Tagami Y, Mizukami T. 1962. Historical review of the researches on bacterial blight of rice caused by Xanthomonas oryzae (Uyede and Ishiyama) Dowson. pp.112. Spec Rep Plant Dis Ins Pests Forecast Serv Kyushu Agric Station Japan. 112.
  4. Ahern SJ, Das M, Bhowmick TS, Young R, Gonzalez CF. 2014. Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas. J. Bacteriol. 196: 459-471. https://doi.org/10.1128/JB.01080-13
  5. Mizukami T, Wakimoto S. 1969. Epidemiology and control of bacterial leaf blight of rice. Ann. Rev. Phytopathol. 7: 51-72. https://doi.org/10.1146/annurev.py.07.090169.000411
  6. OEPP/EPPO 2007. Distribution maps of quarantine pests for Europe Xanthomonas oryzae pv. Oryzae, http://www.eppo.org/QUARANTINE/bacteria/Xanthomonas_oryzae/XANTOR-map.htm. 80: 543-53.
  7. Sharanaiah S, Mysore U, Sateesh K. 2012. Detection of Xanthomonas oryzae pv. oryzae in rice seeds by molecular techniques. Asian Aust. J. Plant Sci. Biotechnol. 6: 44-47.
  8. Zhao WJ, Zhu SF, Liao XL, Chen HY, Tan TW. 2007. Detection of Xanthomonas oryzae pv. oryzae in seeds using a specific TaqMan probe. Mol. Biotechnol. 35: 119-127. https://doi.org/10.1007/BF02686106
  9. Srivastava D, Rao T. 1964. Seed Transmission and epidemiology of bacterial blight disease of rice in North India. Indian Phytopathol. 17: 77-78.
  10. Sakthivel N, Mortensen CN, Mathur SB. 2001. Detection of Xanthomonas oryzae pv. oryzae in artificially inoculated and naturally infected rice seeds and plants by molecular techniques. Appl. Microbiol. Biotechnol. 56: 434-441.
  11. Mew TW. 1993. Focus on bacterial blight of rice. Plant Dis. 77: 5-12. https://doi.org/10.1094/PD-77-0005
  12. Gnanamanickam SS, Priyadarisini VB, Narayanan NN, Vasudevan P, Kavitha S. 1999. An overview of bacterial blight disease of rice and strategies for its management. Curr. Sci. 77: 1435-1433.
  13. Khan JA, Siddiq R, Arshad HMI, Anwar HS, Saleem K, Jamil FF. 2012. Chemical control of bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae. Pakistan. J. Phytopathol. 24: 97-100.
  14. Muller CMO, Yamashita F, Laurindo JB. 2008. Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydr. Polym. 72: 82-87. https://doi.org/10.1016/j.carbpol.2007.07.026
  15. Adachi N, Tsukamoto S. 2012. Control of Bacterial seedling rot and seedling blight of rice by bacteriophage. Plant Dis. 96: 1033-1036. https://doi.org/10.1094/PDIS-03-11-0232-RE
  16. Frampton RA, Pitman AR, Fineran PC. 2012. Advances in bacteriophage-mediated control of plant pathogens. J. Microbiol. 2012: 1-11.
  17. Addy HS, Azizi NF, Mihardjo PA. 2016. Detection of bacterial wilt pathogen and isolation of its bacteriophage from banana in Lumajang area, Indonesia. Int. J. Agron. 2016: 1-7.
  18. Lang JM, Sciences B, Management P. 2007 Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Dis. 91: 871-878. https://doi.org/10.1094/PDIS-91-7-0871
  19. Bae YJ, Wu J, Lee HJ, Jo EJ, Murugaiyan S, Chung E, et al. 2012. Biocontrol potential of a lytic bacteriophage PE204 against bacterial wilt of tomato. J. Microbiol. Biotechnol. 22: 1613-1620. https://doi.org/10.4014/jmb.1208.08072
  20. Sampath A, Vishwanatha T, Sathishagouda S, Jain SN, Reena V, Siddhalingeshwara KG, et al. 2011. Bacteriophage?: Novel biocontrol agent against citrus canker. J. Biotechnol. 2: 775-779.
  21. Das M, Bhowmick TS, Ahern SJ, Young R, Gonzalez CF. 2015. Control of Pierce's disease by phage. PLoS One. 10: 1-15.
  22. Kocharunchitt C, Ross T, Mcneil DL. 2009. International journal of food microbiology use of bacteriophages as biocontrol agents to control Salmonella associated with seed sprouts. Int. J. Food Microbiol. 128: 453-459. https://doi.org/10.1016/j.ijfoodmicro.2008.10.014
  23. Mckenna F, El-tarabily KA, Hardy GESTJ, Dell B. 2001. Novel in vivo use of a polyvalent Streptomyces phage to disinfest Streptomyces scabies -infected seed potatoes. Plant Pathol. 50: 666-675. https://doi.org/10.1046/j.1365-3059.2001.00648.x
  24. Katznelson H, Sutton Md. 1951. A rapid phage plaque count method for the detection of bacteria as applied to the demonstration of internally borne bacterial infections of seed. J. Bacteriol. 61: 689-701.
  25. Chae J-C, Hung NB, Yu S-M, Lee HK, Lee YH. 2014. Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in paddy fields and its potential to control bacterial leaf blight of rice. J. Microbiol. Biotechnol. 24: 740-747. https://doi.org/10.4014/jmb.1402.02013
  26. Kou T-T, Chang L-C, Yang C-M, Yang S-E. 1971. Bacterial leaf blight of rice plant. IV. Effect of bacteriophages on the Infectivity of Xanthomonas oryzae. Bot. Bull. Acad Sin. 12: 1-8.
  27. Lalitha Shanti M, Mohankumarvarma C, Premalatha P, LalithaDevi G, Zher U, Freeman W. 2010. understanding the bacterial blight pathogen-combining pathotyping and molecular marker studies. Int. J. Plant Pathol. 1: 58-68. https://doi.org/10.3923/ijpp.2010.58.68
  28. Bradbury JF. 1970. Isolation and preliminary study of bacteria from plants. Int. J. Pest Manag.16: 632-637.
  29. Gabriel DW, De Feyter R. 1992. RFLP analyses and gene tagging for bacterial identification and taxonomy. pp.51-66. In: Molecular Plant Pathology, A Practical Approach, SJ Gurr, MJ McPherson and DJ Bowles (eds). Oxford, UK: IRL Press.
  30. Keshavarz K, Sijam K, Abidin MHZ, Habibudin H, Nazerian E. 2011. Rapid identification and differentiation of Xanthomonas oryzae pv. oryzae strain with primer 16s-23s rDNA from the rice fields in peninsular Malaysia. Asian J. Plant Pathol. 5: 93-99. https://doi.org/10.3923/ajppaj.2011.93.99
  31. Sambrook J, E.F. Fritsch TM. 1989. Molecular Cloning. pp. 94-98. A Laboratory Manual. 2nd ed. Cold spring Harbor Laboratory, Cold Spring Harbor, New York.
  32. Crosse JE, Hingorani MK. 1958. A method for isolating pseudomonas mors-prunorum phages from the soil. Nature 181: 60-61. https://doi.org/10.1038/181060a0
  33. Adams MH. 1959. Bacteriophages. pp. 18-592. Wily-Interscience Publishers. Inc. New York.
  34. Flynn GO, Ross RP, Fitzgerald GF, Coffey A. 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157?: H7. Appl. Environ. Microbiol. 70: 3417-3424. https://doi.org/10.1128/AEM.70.6.3417-3424.2004
  35. Ellis EL. 1939. The growth of bacteriophage. J. Gen. Physiol. 2: 365-384.
  36. Ackermann HW. 2012. Bacteriophage electron microscopy. Adv. Virus Res. 82: 1-32.
  37. McNeil D, Kocharunchitt C, Ross T. 2009. Use of bacteriophages as biocontrol agents to control Salmonella associated with seed sprouts. Int. J. Food Microbiol. 128: 453-459. https://doi.org/10.1016/j.ijfoodmicro.2008.10.014
  38. Gupta VS, Rajebhosale MD, Sodhi M. 2001. Assessment of genetic variability and strain identification of Xanthomonas oryzae pv. oryzae using RAPD-PCR and IS1112-based PCR. Curr. Sci. 80: 1043-1049.
  39. Lessler J, Azman AS, Mckay HS, Moore SM. 2017. Perspective piece what is a hotspot anyway? Am. J. Trop. Med. Hyg. 96: 1270-1273. https://doi.org/10.4269/ajtmh.16-0427
  40. Ming D, Ye H, Schaad NW, Roth DA. 1991. Selective recovery of Xanthomonas spp. from rice seed. Phytopathology 81: 1358-1363. https://doi.org/10.1094/Phyto-81-1358
  41. Kauffman HE, Reddy AP, Hsieh SP, Merca S. 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonus Oryzae. Plant Dis. Reporter. 57: 537-541.
  42. Okabe O, Goto M. 1963. Bacteriophages of plant pathogens. Annu. Rev. Phytopathol. 1: 397-418. https://doi.org/10.1146/annurev.py.01.090163.002145
  43. Gill J, Abedon ST. 2003. Bacteriophage Ecology and Plants. pp. 1-17. APSnet Feature.
  44. Yin J. 2018. Impact of spatial structure on phage population growth. pp. 94-113. In: Abedon ST, editor. Bacteriophage Ecology. Cambridge: Cambridge University Press.
  45. Abedon ST, Herschler TD, Stopar D. 2001. Bacteriophage latentperiod evolution as a response to resource availability bacteriophage latent-period evolution as a response to resource availability. Appl. Microbiol. Biotechnol. 67: 4233-4241.
  46. Jonezyk E, Klak M, Miedzybrodzki R, Gorski A. 2011. The influence of external factors on bacteriophages - review. Folia Microbiol. 56: 191-200. https://doi.org/10.1007/s12223-011-0039-8
  47. Caldeira JC, Peabody DS. 2007. Stability and assembly in vitro of bacteriophage PP7 virus-like particles. J. Nanobiotechnol. 5: 10. https://doi.org/10.1186/1477-3155-5-10
  48. Ranga Reddy P, Mohanty SK. 1981. Epidemiology of the Kresek phase of bacterial blight of rice. Plant Dis. 65: 578-80. https://doi.org/10.1094/PD-65-578
  49. NACMCF (National Advisory Committee on Microbiological Criteria of Foods), 1999. Microbiological evaluations and recommendations on sprouted seeds. Int. J. Food Microbiol. 52: 123-153. https://doi.org/10.1016/S0168-1605(99)00135-X
  50. Kauffman HE, Reddy APK. 1974. Seed transmission studies of Xanthomonas oryzae in rice. Phytopathology 65: 663-666.

Cited by

  1. Bacteriophages applications in agriculture vol.2019, pp.2, 2019, https://doi.org/10.21931/rb/cs/2019.02.01.24
  2. In vitro exploration of the Xanthomonas hortorum pv. vitians genome using transposon insertion sequencing and comparative genomics to discriminate between core and contextual essential genes vol.7, pp.6, 2019, https://doi.org/10.1099/mgen.0.000546
  3. Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants vol.36, pp.3, 2018, https://doi.org/10.5423/ppj.rw.04.2020.0074
  4. Isolation and Characterization of Novel Phages Targeting Xanthomonas oryzae: Culprit of Bacterial Leaf Blight Disease in Rice vol.2, pp.3, 2018, https://doi.org/10.1089/phage.2021.0009