DOI QR코드

DOI QR Code

화장품 성분들의 세균에 대한 항균 시너지 효과 연구

A Study on Synergistic Antibacterial Activity of Cosmetic Ingredients

  • 김소희 (아모레퍼시픽 기술연구원) ;
  • 윤유나 (아모레퍼시픽 기술연구원) ;
  • 안수선 (아모레퍼시픽 기술연구원)
  • 투고 : 2017.12.05
  • 심사 : 2018.01.18
  • 발행 : 2018.03.31

초록

본 연구에서는 화장품에 널리 쓰이는 컨디셔닝제이면서 항균력을 가지는 성분들인 1,2-hexanediol, ethylhexylglycerin, glyceryl caprylate를 대상으로, 이들이 화장품 제형 내에서 다양한 제형 원료와 혼합될 때 그람 양성, 음성 세균에 대한 항균력이 어떻게 변화하는지 확인하고자 하였다. 검토할 제형 원료로는 제형 내에서 항균력을 향상시킬 것으로 예상되는 물질 7종(1,3-propanediol, 1,3-butanediol, glycerin, dipropylene glycol, niacinamide, EDTA-2Na, ethanol)을 선정하였으며, checkerboard assay를 이용하여 해당 물질들과 항균력을 지닌 3종 물질에 대한 항균 시너지 효과를 확인하였다. 시험 결과, 세균에 대해 눈에 띄는 항균 시너지 효과를 보인 물질은 ethanol과 EDTA-2Na였으며 특히 ethanol은 항균력을 지닌 컨디셔닝제 3종 모두와 세균에 대해 항균 시너지 효과를 나타냄을 확인할 수 있었다. Glyceryl caprylate는 시험한 물질 7종 모두와 그람 양성균인 S. aureus에 대해 항균 부가 및 상승 효과를 나타내었으며, 4종의 폴리올이 첨가된 제형에는 1,2-hexanediol, glyceryl caprylate 조합으로 방부처방을 하는 것이 그람 양성, 음성 세균을 모두 제어하기에 용이하다고 판단되었다. 본 연구는 화장품에서 자주 이용되는 항균력을 지닌 컨디셔닝제와 주요 제형 원료의 항균 시너지 효과를 확인함으로써 항균력을 지닌 컨디셔닝제의 제형 내 항균력을 예측하는 데 기여했다는 점에서 의의가 있다.

In this study, 1,2-hexanediol, ethylhexylglycerin, and glyceryl caprylate known as skin conditioning agents with antimicrobial activity in cosmetics were investigated for their antimicrobial activity against gram-positive and gram-negative bacteria when combining them with various ingredients in cosmetic formulations. Seven kinds of substances expected to improve the antibacterial activity in formulations were selected to blend with these three compounds.; 1,3-propanediol, 1,3-butanediol, glycerin, dipropylene glycol, niacinamide, EDTA-2Na, and ethanol. The checkerboard assay was conducted to confirm the antibacterial synergy of these seven substances and the three skin conditioning agents. Consequently, ethanol and EDTA-2Na were detected as the significant materials with synergistic effect as well as ethanol showed antibacterial synergy with all the three compounds. When seven of selected materials were mixed with glyceryl caprylate, there were synergistic or additive activity against S. aureus, gram-positive bacteria and it was suggested that the combination with 1,2-hexanediol and glyceryl caprylate was useful to control both gram-positive and gram-negative bacteria when there were four kinds of polyols. This study is meaningful in that it confirmed the antibacterial synergy of the skin conditioning agents with antimicrobial activity and the main raw materials frequently used in cosmetics, thereby contributing to prediction of the antibacterial activity of the skin conditioning agents in cosmetic formulations.

키워드

참고문헌

  1. A. Varvaresou, S. Papageorgiou, E. Tsirivas, E. Protopapa, H. Kintziou, V. Kefala, and C. Demetzos, Self-preserving cosmetics, Int. J. Cosmet. Sci., 31, 163 (2009). https://doi.org/10.1111/j.1468-2494.2009.00492.x
  2. S. J. Jung, Y. S. Hwang, C. M. Choi, A. S. Park, S. U. Kim, H. J. Kim, J. H. Kim, and K. Jung, Examination and quantification of preservatives in cosmetics for children, J. Soc. Cosmet. Sci. Korea, 41(3), 219 (2015). https://doi.org/10.15230/SCSK.2015.41.3.219
  3. R. Pillai, G. Schmaus, A. Pfeiffer, S. Lange, and A. Trunet, 1,2-Alkanediols for cosmetic preservation, Cosmet. Toiletries, 123(10), 53 (2013).
  4. E. Y. Choi, Effect of phenoxyethanol and alkane diol mixture on the antimicrobial activity and antiseptic ability in cosmetics, Kor. J. Aesthet. Cosmetol., 13(2), 213 (2015).
  5. Yogiara, S. J. Hwang, S. Park, J. K. Hwang, and J. G. Pan, Food-grade antimicrobials potentiate the antibacterial activity of 1,2-hexanediol, Lett. Appl. Microbiol., 60(5), 431 (2015). https://doi.org/10.1111/lam.12398
  6. S. Langsrud, K. Steinhauer, S. Luthje, K. Weber, P. Gorony-Bermes, and A. L. Holck, Ethylhexylglycerin impairs membrane integrity and enhances the lethal effect of phenoxyethanol, PLoS One, doi: 10.1371/journal.pone.0165228 (2016).
  7. W. Beilfuss, M. Leschke, and K. Weber, A new concept to boost the preservative efficacy of phenoxyethanol, SOFW Journal, 11(131), 2 (2005).
  8. S. Papageorgiou, A. Varvaresou, E. Tsirivas, and C. Demetzos, New alternatives to cosmetics preservation, J. Cosmet. Sci., 61, 107 (2010).
  9. M. Hosseinnejad and S. M. Jafari, Evaluation of different factors affecting antimicrobial properties of chitosan, Int. J. Biol. Macromol., 85, 467 (2016). https://doi.org/10.1016/j.ijbiomac.2016.01.022
  10. I. H. N. Bassole and H. R. Juliani, Essential oils in combination and their antimicrobial properties, Molecules, 17, 3989 (2012). https://doi.org/10.3390/molecules17043989
  11. H. Berthele, O. Sella, M. Lavarde, C. Mielcarek, A. M. Pense-Lheritier, and Pirnay, Determination of the influence of factors (ethanol, pH and aw) on the preservation of cosmetics using experimental design, Int. J. Cosmet. Sci., 36, 54 (2014). https://doi.org/10.1111/ics.12094
  12. S. Finnegan and S. L. Percival, EDTA: an antimicrobial and antibiofilm agent for use in wound care, Adv. Wound Care, 4(7), 415 (2015). https://doi.org/10.1089/wound.2014.0577
  13. A. Lawal, J. A. Obaleye, J. F. Adediji, S. A. Amolegbe, M. O. Bamigboye, and M. T. Yunus-Issa, Synthesis, characterization and antimicrobial activities of some nicotinamide-metal complexes, J. Appl. Sci. Environ. Manage., 18(2), 205 (2014).
  14. T. M. Nalawade, K. Bhat, and S. H. Sogi, Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms, J. Int. Soc. Prev. Community Dent., 5(2), 114 (2015). https://doi.org/10.4103/2231-0762.155736
  15. T. Kinnunen and M. Koskela, Antibacterial and antifungal properties of propylene glycol, hexylene glycol, and 1,3-butylene glycol in vitro, Acta. Derm. Venereol., 71(2), 148 (1991).
  16. M. M. Sopirala, J. E. Mangino, W. A. Gebreyes, B. Biller, T. Bannerman, J. M. Balada-Llasat, and P. Pancholi, Synergy testing by Etest, microdilution checkerboard, and time-kill methods for pan-drug-resistant Acinetobacter baumannii, Antimicrob. Agents Chemother., 54(11), 4678 (2010). https://doi.org/10.1128/AAC.00497-10
  17. B. P. Chew, L. W. Joelker, and T. G. Tanaka, In vitro growth inhibition of Mastitis causing bacteria by phenolics and metal chelators, J. Dairy Sci., 68, 3037 (1985). https://doi.org/10.3168/jds.S0022-0302(85)81199-1
  18. D. H. Qiu., Z. L. Huang, T. Zhou, C. Shen, and R. C. Hider, In vitro inhibition of bacterial growth by iron chelators, FEMS Microbiol. Lett., 314, 107 (2010).
  19. T. Fukushima, B. E. Allred, and K. N. Raymond, Direct evidence of iron uptake by the gram-positive siderophore-shuttle mechanism without iron reduction, ACS Chem. Biol., 9(9), 2092 (2014). https://doi.org/10.1021/cb500319n