DOI QR코드

DOI QR Code

The Feasibility for Whole-Night Sleep Brain Network Research Using Synchronous EEG-fMRI

수면 뇌파-기능자기공명영상 동기화 측정과 신호처리 기법을 통한 수면 단계별 뇌연결망 연구

  • Kim, Joong Il (Future Medicine Division, Korea Institute of Oriental Medicine) ;
  • Park, Bumhee (Department of Biomedical Informatics, Ajou University School of Medicine) ;
  • Youn, Tak (Department of Psychiatry, Dongguk University Ilsan Hospital) ;
  • Park, Hae-Jeong (BK21 PLUS Project for Medical Science, Yonsei University College of Medicine)
  • 김중일 (한국한의학연구원 미래의학부) ;
  • 박범희 (아주대학교 의과대학 의료정보학과) ;
  • 윤탁 (동국대학교 의과대학 일산병원 정신건강의학과) ;
  • 박해정 (연세대학교 의과대학 BK21 PLUS 의과학과)
  • Received : 2018.11.21
  • Accepted : 2018.12.10
  • Published : 2018.12.31

Abstract

Objectives: Synchronous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has been used to explore sleep stage dependent functional brain networks. Despite a growing number of sleep studies using EEG-fMRI, few studies have conducted network analysis on whole night sleep due to difficulty in data acquisition, artifacts, and sleep management within the MRI scanner. Methods: In order to perform network analysis for whole night sleep, we proposed experimental procedures and data processing techniques for EEG-fMRI. We acquired 6-7 hours of EEG-fMRI data per participant and conducted signal processing to reduce artifacts in both EEG and fMRI. We then generated a functional brain atlas with 68 brain regions using independent component analysis of sleep fMRI data. Using this functional atlas, we constructed sleep level dependent functional brain networks. Results: When we evaluated functional connectivity distribution, sleep showed significantly reduced functional connectivity for the whole brain compared to that during wakefulness. REM sleep showed statistically different connectivity patterns compared to non-REM sleep in sleep-related subcortical brain circuits. Conclusion: This study suggests the feasibility of exploring functional brain networks using sleep EEG-fMRI for whole night sleep via appropriate experimental procedures and signal processing techniques for fMRI and EEG.

목 적 : 본 연구는 전 수면 주기 동안 수면단계에 따른 전체 뇌 영역과 수면 관련 뇌 영역들의 뇌기능 연결망의 변화를 살펴보기 위해 동기화된 뇌파(EEG)-자기기능공명영상(fMRI)를 전 수면 주기 동안 측정하고 신호처리 기법을 사용함으로 수면 단계에 따른 뇌 연결망의 탐구가 가능함을 살펴 보기 위해 수행되었다. 방 법 : 정상 성인 피험자 5인을 대상으로 6~7시간의 수면동안 MRI 기계 안에서 안전도, 심전도, 근전도와 EEG-fMRI를 측정하였고 EEG에 발생한 MRI 자장 변화 잡음과 심박관련 잡음을 제거하였다. fMRI에서는 피험자의 움직임에 의해 발생하는 영상 왜곡을 보정하는 부분볼륨활용기법을 제안하여 사용하였다. 잡음이 제거된 수면중 fMRI에 독립성분분석기법을 적용하여 뇌 전체를 68 영역으로 구획하여 수면 연구에 적합한 뇌 구획 지도를 만들고 이를 바탕으로 각 구획들간의 연결성을 계산하였다. 수면관련 뇌심부 영역을 선택하여 연결망 분석을 수행하였다. 결 과 : 뇌파를 비롯한 수면 생리적 신호들은 잡음 제거의 방법을 이용하게 되면 수면단계설정에 문제가 없으며 수면 단계별 뇌 연결망 연구가 가능함을 보여 주었다. 뇌연결망 분석에서 수면 관련 뇌심부 연결망은 렘과 비렘수면에 따라 다른 특성이 나타나는데 비렘수면에서 전반적으로 높은 연결성을 보였다. 대뇌를 포함한 전체 뇌 연결망의 경우 각성에 비해서 수면 중에 뇌 연결성이 떨어지는 양상을 보였다(Kolmogorov-Smirnov 검정 ; p < 0.05, Bonferroni corrected). 결 론 : 본 연구를 통해서 장시간 수면 EEG-fMRI 측정과 수면단계설정이 가능하고 신호처리 기법을 통해서 보정하게 되면 뇌기능 연결망을 이용한 전체 수면 뇌 연구가 가능함을 시사한다.

Keywords

DSMOBC_2018_v25n2_82_f0001.png 이미지

Figure 1. The EEG preprocessing steps for EEG-fMRI data.

DSMOBC_2018_v25n2_82_f0002.png 이미지

Figure 2. Two examples of hypnogram for EEG-fMRI sleep study.

DSMOBC_2018_v25n2_82_f0003.png 이미지

Figure 3. Sleep stage dependent connectivity matrices.

DSMOBC_2018_v25n2_82_f0004.png 이미지

Figure 4. Connectivity difference between Wake and Sleep and between REM and NREM among sleep related subcortical regions.

References

  1. Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 2000;12:230-239. https://doi.org/10.1006/nimg.2000.0599
  2. Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L. Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 1998;8:229-239. https://doi.org/10.1006/nimg.1998.0361
  3. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echoplanar MRI. Magn Reson Med 1995;34:537-541. https://doi.org/10.1002/mrm.1910340409
  4. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10:186-198. https://doi.org/10.1038/nrn2575
  5. Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 2011;7:113-140. https://doi.org/10.1146/annurev-clinpsy-040510-143934
  6. Christoph Mulert LL. EEG-fMRI. In: Christoph Mulert LL (Ed), Physiological Basis, Technique, and Applications. Springer Berlin Heidelberg;2010.
  7. Czisch M, Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Pollmacher T, et al. Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates. Eur J Neurosci 2004;20:566-574. https://doi.org/10.1111/j.1460-9568.2004.03518.x
  8. Duyn JH. EEG-fMRI Methods for the study of brain networks during Sleep. Front Neurol 2012;3:100.
  9. Gvilia I. Underlying brain mechanisms that regulate sleep-wakefulness cycles. Int Rev Neurobiol 2010;93:1-21.
  10. Himberg J, Hyvarinen A, Esposito F. Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 2004;22:1214-1222. https://doi.org/10.1016/j.neuroimage.2004.03.027
  11. Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, et al. Decoupling of the brain's default mode network during deep sleep. Proc Natl Acad Sci U S A 2009;106:11376-11381. https://doi.org/10.1073/pnas.0901435106
  12. Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 1999;10:626-634. https://doi.org/10.1109/72.761722
  13. Iber C, Ancoli-Israel S, Chesson A. Quan SF for the American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. 1st ed. Wenchester, Minois: American Academy of Sleep Medicine;2007.
  14. Kaufmann C, Wehrle R, Wetter TC, Holsboer F, Auer DP, Pollmacher T, et al. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain 2006;129:655-667. https://doi.org/10.1093/brain/awh686
  15. Kim DJ, Park B, Park HJ. Functional connectivity-based identification of subdivisions of the basal ganglia and thalamus using multilevel independent component analysis of resting state fMRI. Hum Brain Mapp 2013;34:1371-1385. https://doi.org/10.1002/hbm.21517
  16. Larson-Prior LJ, Power JD, Vincent JL, Nolan TS, Coalson RS, Zempel J, et al. Modulation of the brain's functional network architecture in the transition from wake to sleep. Prog Brain Res 2011;193:277-294.
  17. Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME. Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci U S A 2009;106:4489-4494. https://doi.org/10.1073/pnas.0900924106
  18. Maquet P. Understanding non rapid eye movement sleep through neuroimaging. World J Biol Psychiatry 2010;11 Suppl 1:9-15. https://doi.org/10.3109/15622971003637736
  19. Mascetti L, Foret A, Bourdiec AS, Muto V, Kusse C, Jaspar M, et al. Spontaneous neural activity during human non-rapid eye movement sleep. Prog Brain Res 2011;193:111-118.
  20. Musso F, Brinkmeyer J, Mobascher A, Warbrick T, Winterer G. Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks. Neuroimage 2010;52:1149-1161. https://doi.org/10.1016/j.neuroimage.2010.01.093
  21. Nam H, Park HJ. Distortion correction of high b-valued and high angular resolution diffusion images using iterative simulated images. Neuroimage 2011;57:968-978. https://doi.org/10.1016/j.neuroimage.2011.05.018
  22. Park HJ, Friston K. Structural and functional brain networks: from connections to cognition. Science 2013;342:1238411. https://doi.org/10.1126/science.1238411
  23. Picchioni D, Duyn JH, Horovitz SG. Sleep and the functional connectome. Neuroimage 2013;80:387-396. https://doi.org/10.1016/j.neuroimage.2013.05.067
  24. Picchioni D, Horovitz SG, Fukunaga M, Carr WS, Meltzer JA, Balkin TJ, et al. Infraslow EEG oscillations organize largescale cortical-subcortical interactions during sleep: a combined EEG/fMRI study. Brain Res 2011;1374:63-72. https://doi.org/10.1016/j.brainres.2010.12.035
  25. Picchioni D, Pixa ML, Fukunaga M, Carr WS, Horovitz SG, Braun AR, et al. Decreased Connectivity between the Thalamus and the Neocortex during Human Nonrapid Eye Movement Sleep. Sleep 2014;37:387-397. https://doi.org/10.5665/sleep.3422
  26. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682. https://doi.org/10.1073/pnas.98.2.676
  27. Rechtschaffen A, Kales A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Brain Information Service/Brain Research Institute, University of California, Los Angeles;1968.
  28. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;52:1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
  29. Sakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev 2005;9:231-241. https://doi.org/10.1016/j.smrv.2004.07.007
  30. Samann PG, Tully C, Spoormaker VI, Wetter TC, Holsboer F, Wehrle R, et al. Increased sleep pressure reduces resting state functional connectivity. MAGMA 2010;23:375-389. https://doi.org/10.1007/s10334-010-0213-z
  31. Saper CB, Cano G, Scammell TE. Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 2005a;493:92-98. https://doi.org/10.1002/cne.20770
  32. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005b;437:1257-1263. https://doi.org/10.1038/nature04284
  33. Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, et al. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci U S A 2007;104:13164-13169. https://doi.org/10.1073/pnas.0703084104
  34. Sejnowski TJ, Destexhe A. Why do we sleep? Brain Res 2000;886:208-223. https://doi.org/10.1016/S0006-8993(00)03007-9
  35. Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, et al. Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci U S A 2012;109:3131-3136. https://doi.org/10.1073/pnas.1121329109
  36. Spoormaker VI, Gleiser PM, Czisch M. Frontoparietal Connectivity and Hierarchical Structure of the Brain's Functional Network during Sleep. Front Neurol 2012;3:80.
  37. Spoormaker VI, Schroter MS, Gleiser PM, Andrade KC, Dresler M, Wehrle R, et al. Development of a large-scale functional brain network during human non-rapid eye movement sleep. J Neurosci 2010;30:11379-11387. https://doi.org/10.1523/JNEUROSCI.2015-10.2010
  38. Sporns O. The human connectome: a complex network. Ann N Y Acad Sci;2011.
  39. Sporns O. Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 2013;23:162-171. https://doi.org/10.1016/j.conb.2012.11.015
  40. Tagliazucchi E, von Wegner F, Morzelewski A, Brodbeck V, Borisov S, Jahnke K, et al. Large-scale brain functional modularity is reflected in slow electroencephalographic rhythms across the human non-rapid eye movement sleep cycle. Neuroimage 2013;70:327-339. https://doi.org/10.1016/j.neuroimage.2012.12.073
  41. Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev 2006;10:49-62. https://doi.org/10.1016/j.smrv.2005.05.002
  42. Turk-Browne NB. Functional interactions as big data in the human brain. Science 2013;342:580-584. https://doi.org/10.1126/science.1238409
  43. Uehara T, Yamasaki T, Okamoto T, Koike T, Kan S, Miyauchi S, et al. Efficiency of a "Small-World" Brain Network Depends on Consciousness Level: A Resting-State fMRI Study. Cereb Cortex 2014;24:1529-1539. https://doi.org/10.1093/cercor/bht004