DOI QR코드

DOI QR Code

Anthocyanin - A Natural Dye for Smart Food Packaging Systems

  • Singh, Suman (Department of Food Engineering, Institute of Food Science & Technology, VCSG Uttarakhand University of Horticulture and Forestry) ;
  • Gaikwad, Kirtiraj K. (Department Chemical Engineering, Polytecnique Montreal) ;
  • Lee, Youn Suk (Department of Packaging, Yonsei University)
  • Received : 2018.12.17
  • Accepted : 2018.12.31
  • Published : 2018.12.31

Abstract

Interest in the use of smart packaging systems for food products has increased in recent years. Therefore, food researchers are focusing on the development of new indicator based smart packaging technologies by using anthocyanin-based natural dye. Anthocyanins are one of the plant constituents known as flavonoids and responsible for the bright and attractive orange, red, purple, and blue colors of most fruits, vegetables, flowers, and some cereal grains. Indicators of natural dyes such as anthocyanins could express the quality and shelf life of perishable food products. However, the sensitivity and stability for their use in smart food packaging should be established to reach the market proposals. This review article focuses on recent studies related to use of natural dyes based on anthocyanin for smart food packaging applications. This study offers valuable insight that may be useful for identifying trends in the commercialization of natural dyes or for identifying new research areas. This review also provides food and packaging scientists with a thorough understanding of the benefits of anthocyanin-based natural dyes for shelf life indicator when applied to package material specific foods and hence can assist in accelerating commercial adoption.

Keywords

References

  1. Singh, S., Gaikwad, K. K., Lee, M., and Lee, Y. S. 2018. Temperature sensitive smart packaging for monitoring the shelf life of fresh beef. J. Food Eng. 234: 41-49. https://doi.org/10.1016/j.jfoodeng.2018.04.014
  2. Gaikwad, K. K., Singh, S., and Lee, Y. S. 2018. Oxygen scavenging films in food packaging. Environ. Chem. Lett. 16: 523-538. https://doi.org/10.1007/s10311-018-0705-z
  3. Singh, S., Gaikwad, K. K., and Lee, Y. S. 2018. Phase change materials for advanced cooling packaging. Environ. Chem. Lett. 16: 845-859. https://doi.org/10.1007/s10311-018-0726-7
  4. Gaikwad, K. K., Singh, S., and Ajji, A. 2018. Moisture absorbers for food packaging applications. Environ. Chem. Lett. 1-20. https://doi.org/10.1007/s10311-018-0810-z
  5. Gaikwad, K. K., Lee, S. M., Lee, J. S., and Lee, Y. S. 2017. Development of antimicrobial polyolefin films containing lauroyl arginate and their use in the packaging of strawberries. J. Food Meas. Charact. 11: 1706-1716. https://doi.org/10.1007/s11694-017-9551-0
  6. Singh, S., Lee, M., Gaikwad, K. K. and Lee, Y. S. 2018. Antibacterial and amine scavenging properties of silver-silica composite for post-harvest storage of fresh fish. Food Bioprod. Process 107: 61-69. https://doi.org/10.1016/j.fbp.2017.10.009
  7. Singh, S., Gaikwad, K. K., Lee, M., and Lee, Y. S. 2018. Microwave-assisted micro-encapsulation of phase change material using zein for smart food packaging applications. J. Therm. Anal. Calorim. 131: 2187-2195. https://doi.org/10.1007/s10973-017-6768-4
  8. Gaikwad, K. K., Singh, S., and Lee, Y. S. 2018. High adsorption of ethylene by alkali-treated halloysite nanotubes for foodpackaging applications. Environ. Chem. Lett. 16: 1055-1062. https://doi.org/10.1007/s10311-018-0718-7
  9. Gaikwad, K. K., Singh, S., and Lee, Y. S. 2017. A new pyrogallol coated oxygen scavenging film and their effect on oxidative stability of soybean oil under different storage conditions. Food Sci. Biotechnol. 26:1535-1543. https://doi.org/10.1007/s10068-017-0232-x
  10. Gaikwad, K. K., Singh, S., and Lee, Y. S. 2018. Antimicrobial and improved barrier properties of natural phenolic compound-coated polymeric films for active packaging applications. J. Coat. Technol. Res. 1-11. https://doi.org/10.1007/s11998-018-0109-9
  11. Singh, S., Gaikwad, K. K., Lee, M., and Lee, Y. S. 2018. Temperature-regulating materials for advanced food packaging applications: A review. J. Food Meas. Charact. 12: 588-601. https://doi.org/10.1007/s11694-017-9672-5
  12. Singh, S., Gaikwad, K. K., and Lee, Y. S. 2018. Antimicrobial and antioxidant properties of polyvinyl alcohol bio composite films containing seaweed extracted cellulose nano-crystal and basil leaves extract. Int. J. Biol. Macromol. 107: 1879-1887. https://doi.org/10.1016/j.ijbiomac.2017.10.057
  13. Singh, S., Gaikwad, K. K., Lee, M., and Lee, Y. S. 2018. Thermally buffered corrugated packaging for preserving the postharvest freshness of mushrooms (Agaricus bispours). J. Food Eng. 216: 11-19. https://doi.org/10.1016/j.jfoodeng.2017.07.013
  14. Ahn, B. J., Gaikwad, K. K., and Lee, Y. S. 2016. Characterization and properties of LDPE film with gallic-acid-based oxygen scavenging system useful as a functional packaging material. J. Appl. Polym. Sci. 133: 43.
  15. Choi, W. S., Singh, S., and Lee, Y. S. 2016. Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of 'Formosa' plum (Prunus salicina L.). LWT-Food Sci. Technol. 70: 213-222. https://doi.org/10.1016/j.lwt.2016.02.036
  16. Gaikwad, K. K. and Lee, Y. S. 2017. Current scenario of gas scavenging systems used in active packaging-A review. Korean Journal of Packaging Science & Technology 23: 109-117. https://doi.org/10.20909/kopast.2017.23.2.109
  17. Gaikwad, K. K., and Lee, Y. S. 2016. Novel natural phenolic compound-based oxygen scavenging system for active packaging applications. J. Food Meas. Charact. 10: 533-538. https://doi.org/10.1007/s11694-016-9332-1
  18. Singh, S., Gaikwad, K. K., Park, S. I., and Lee, Y. S. 2017. Microwave-assisted step reduced extraction of seaweed (Gelidiella aceroso) cellulose nanocrystals. Int. J. Biol. Macromol. 99: 506-510. https://doi.org/10.1016/j.ijbiomac.2017.03.004
  19. Zhang, N., Liu, X., Jin, X., Li, C., Wu, X., Yang, S., Ning, J., Yanne, P., 2017. Determination of total iron-reactive phenolics, anthocyanins and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging. Food Chem. 237: 811-817. https://doi.org/10.1016/j.foodchem.2017.06.007
  20. Dong, S., Luo, M., Peng, G., and Cheng, W. 2008. Broad range pH sensor based on sol-gel entrapped indicators on fibre optic. Sensors and Actuators B: Chemical 129: 94-98. https://doi.org/10.1016/j.snb.2007.07.078
  21. Yoshida, C. M. P., Maciel, V. B. V, Mendonca, M. E. D., and Franco, T. T. 2014. Chitosan biobased and smart films: Monitoring pH variations. LWT-Food Sci. Technol. 55: 83-89. https://doi.org/10.1016/j.lwt.2013.09.015
  22. Calogero, G., Yum, J. H., Sinopoli, A., Di Marco, G., Gratzel, M., and Nazeeruddin, M. K. 2012. Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Solar Energy 86: 1563-1575. https://doi.org/10.1016/j.solener.2012.02.018
  23. Santos, D. T., Veggi, P. C., and Meireles, M. A. 2010. Extraction of antioxidant compounds from jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation. Journal of Food Engineering 101: 23-31. https://doi.org/10.1016/j.jfoodeng.2010.06.005
  24. Yang, Y., Yuan, X., Xu, Y., and Yu, Z. 2015. Purification of anthocyanins from extracts of red raspberry using macroporous resin. International Journal of Food Properties 18: 1046-58. https://doi.org/10.1080/10942912.2013.862632
  25. Ju, Z. and Howard, L. R. 2005. Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. Journal of Food Science 70: 270-276.
  26. Grigoras, C. G., Destandau, E., Zubrzycki, S., and Elfakir, C. 2012. Sweet cherries anthocyanins: An environmental friendly extraction and purification method. Separation and Purification Technology 100: 51-58. https://doi.org/10.1016/j.seppur.2012.08.032
  27. Arapitsas, P. and Turner, C. 2008. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta 74: 1218-1223. https://doi.org/10.1016/j.talanta.2007.08.029
  28. Lopez, N., Puertolas, E., Condon, S., Alvarez, I., and Raso, J. 2008. Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innov. Food Sci. Emerg. Technol. 9: 477-482. https://doi.org/10.1016/j.ifset.2007.11.001
  29. Chandrasekhar, J., Madhusudhan, M. C., and Raghavarao, K. S. M. S. 2012. Extraction of anthocyanins from red cabbage and purification using adsorption. Food and Bioproducts Processing 90: 615-623. https://doi.org/10.1016/j.fbp.2012.07.004
  30. Barnes, J. S., Nguyen, H. P., Shen, S., and Schug, K. A. 2009. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatographyelectrospray ionization-ion trap-time of flight-mass spectrometry. Journal of Chromatography A 1216: 4728-4735. https://doi.org/10.1016/j.chroma.2009.04.032
  31. Castaneda-Ovando, A., de Lourdes Pacheco-Hernandez, M., Paez-Hernandez, M. E., Rodriguez, J. A., and Galan-Vidal, C. A. 2009. Chemical studies of anthocyanins: A review. Food Chemistry 113: 859-871. https://doi.org/10.1016/j.foodchem.2008.09.001
  32. Rodriguez-Amaya, D. B. 2018. Update on natural food pigments -A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, https://doi.org/10.1016/j.foodres.2018.05.028
  33. Wang, W. D. and Xu, S. Y. 2007. Degradation kinetics of anthocyanins in blackberry juice and concentrate. Journal of Food Engineering 82: 271-275. https://doi.org/10.1016/j.jfoodeng.2007.01.018
  34. Deylami, M. Z., Rahman, R. A., Tan, C. P., Bakar, J., and Olusegun, L. 2016. Effect of blanching on enzyme activity, color changes, anthocyanin stability and extractability of mangosteen pericarp: A kinetic study. Journal of Food Engineering 178: 12-19. https://doi.org/10.1016/j.jfoodeng.2016.01.001
  35. Liu, B., Xu, H., Zhao, H., Liu, W., Zhao, L., and Li, Y. 2017. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohyd. Polym. 157: 842-849. https://doi.org/10.1016/j.carbpol.2016.10.067
  36. Prietto, L., Pinto, V. Z., El Halal, S. L. M., de Morais, M. G., Costa, J. A. V., Lim, L. T., ... and Zavareze, E. D. R. 2018. Ultrafine fibers of zein and anthocyanins as natural pH indicator. J. Sci. Food Agric. 98: 2735-2741. https://doi.org/10.1002/jsfa.8769
  37. Saliu, F. and Della Pergola, R. 2018. Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures. Sensors and Actuators B: Chemical 258: 1117-1124. https://doi.org/10.1016/j.snb.2017.12.007
  38. Uranga, J., Etxabide, A., Guerrero, P., and de la Caba, K. 2018. Development of active fish gelatin films with anthocyanins by compression molding. Food Hydrocolloids 84: 313-320. https://doi.org/10.1016/j.foodhyd.2018.06.018
  39. Stoll, L., Costa, T. M. H., Jablonski, A., Flores, S. H., and de Oliveira Rios, A. 2016. Microencapsulation of anthocyanins with different wall materials and its application in active biodegradable films. Food and Bioprocess Technology 9: 172-181. https://doi.org/10.1007/s11947-015-1610-0
  40. e Silva, A. O., Haas, T. M., Hickmann, S., & de Oliveira, A. (2017). Active biodegradable film with encapsulated anthocyanins: Effect on the quality attributes of extraa virgin olive oil during storage. Journal of Food Processing and Preservation.
  41. Saliu, F. and Della Pergola, R. 2018. Carbon dioxide colorimetric indicators for food packaging application: Applicability of anthocyanin and poly-lysine mixtures. Sensors and Actuators B: Chemical 258: 1117-1124. https://doi.org/10.1016/j.snb.2017.12.007
  42. Wei, J., Xu, D., Zhang, X., Yang, J., and Wang, Q. 2018. Evaluation of anthocyanins in Aronia melanocarpa/BSA binding by spectroscopic studies. AMB Express, 8: 72. https://doi.org/10.1186/s13568-018-0604-5
  43. Zhang, X., Lu, S., and Chen, X. 2014. A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sensors and Actuators B: Chemical 198: 268-273. https://doi.org/10.1016/j.snb.2014.02.094
  44. Ma, Q., and Wang, L. 2016. Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sensors and Actuators B: Chemical 235: 401-407. https://doi.org/10.1016/j.snb.2016.05.107
  45. Choi, I., Lee, J. Y., Lacroix, M., and Han, J. 2017. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry 218: 122-128. https://doi.org/10.1016/j.foodchem.2016.09.050
  46. Silva-Pereira, M. C., Teixeira, J. A., Pereira-Junior, V. A., and Stefani, R. 2015. Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT-Food Sci. Technol. 61: 258-262. https://doi.org/10.1016/j.lwt.2014.11.041
  47. Maciel, V. B. V, Yoshida, C. M. P., Franco, T. T., 2012. Development of a prototype of a colourimetric temperature indicator for monitoring food quality. J. Food Eng. 111: 21-27. https://doi.org/10.1016/j.jfoodeng.2012.01.037
  48. Pourjavaher, S., Almasi, H., Meshkini, S., Pirsa, S., Parandi, E. 2017. Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydr. Polym. 156: 193-201. https://doi.org/10.1016/j.carbpol.2016.09.027
  49. Zhai, X., Shi, J., Zou, X., Wang, S., Jiang, C., Zhang, J., ... and Holmes, M. 2017. Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocolloids 69: 308-317. https://doi.org/10.1016/j.foodhyd.2017.02.014
  50. Pereira, P. F. and Andrade, C. T. 2017. Optimized pH-responsive film based on a eutectic mixture-plasticized chitosan. Carbohyd. Polym. 165: 238-246. https://doi.org/10.1016/j.carbpol.2017.02.047
  51. Listyarini, A., Sholihah, W., and Imawan, C. 2018. A paperbased colorimetric indicator label using natural dye for monitoring shrimp spoilage. In IOP Conference Series: Materials Science and Engineering 367: 012045.
  52. Halasz, K. and Csoka, L. 2018. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packaging and Shelf Life 16: 185-193. https://doi.org/10.1016/j.fpsl.2018.03.002
  53. Fitriana, R., Imawan, C., Listyarini, A., and Sholihah, W. 2017. A green label for acetic acid detection based on chitosan and purple sweet potatoes extract. In Sensors, Instrumentation, Measurement and Metrology (ISSIMM), 129-132.
  54. Liang, T., Sun, G., Cao, L., Li, J., and Wang, L. 2019. A pH and $NH_3$ sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocolloids 87: 858-868. https://doi.org/10.1016/j.foodhyd.2018.08.028
  55. Luchese, C. L., Sperotto, N., Spada, J. C., and Tessaro, I. C. 2017. Effect of blueberry agro-industrial waste addition to corn starch-based films for the production of a pH-indicator film. Int. J. Biol. Macromol. 104: 11-18. https://doi.org/10.1016/j.ijbiomac.2017.05.149
  56. Kurek, M., Garofulic, I. E., Bakic, M. T., Scetar, M., Uzelac, V. D., and Galic, K. 2018. Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants. Food Hydrocolloids 84: 238-246. https://doi.org/10.1016/j.foodhyd.2018.05.050
  57. Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X., and Jiang, S. 2018. Films based on ${\kappa}$-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids 83: 134-142. https://doi.org/10.1016/j.foodhyd.2018.05.012
  58. Wei, Y. C., Cheng, C. H., Ho, Y. C., Tsai, M. L., and Mi, F. L. 2017. Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocolloids 69: 491-502. https://doi.org/10.1016/j.foodhyd.2017.03.010
  59. Gaikwad, K. K., Lee, J. Y., and Lee, Y. S. 2016. Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application. Journal of Food Science and Technology 53: 1608-1619. https://doi.org/10.1007/s13197-015-2104-9
  60. Gaikwad, K. K. and Lee, Y. S. 2017. Effect of storage conditions on the absorption kinetics of non-metallic oxygen scavenger suitable for moist food packaging. Journal of Food Measurement and Characterization 11: 965-971. https://doi.org/10.1007/s11694-017-9470-0
  61. Suebkhampet, A. and Sotthibandhu, P. 2012. Effect of using aqueous crude extract from butterfly pea flowers (Clitoria ternatea L.) as a dye on animal blood smear staining. Suranaree J. Sci. Technol. 19: 15-19.
  62. Okoduwa, S. I., Mbora, L. O., Adu, M. E., and Adeyi, A. A. 2015. Comparative analysis of the properties of acid-base indicator of Rose (Rosa setigera), Allamanda (Allamanda cathartica), and Hibiscus (Hibiscus rosa-sinensis) flowers. Biochemistry Research International, http://dx.doi.org/10.1155/2015/381721
  63. Suppadit, T., Sunthorn, N., and Poungsuk, P. 2011. Use of anthocyanin extracted from natural plant materials to develop a pH test kit for measuring effluent from animal farms. African Journal of Biotechnology 10: 19109-19118.
  64. Tilekar, K., Jagtap, P. N., and Hake, R. S. 2015. Methanolic extract of flowers & seeds: Natural resource as indicator in acidimetry & alkalimetry. International Journal of Advances in Pharmacy, Biology, Chemistry 4: 447-457.
  65. Kanda, N., Asano, T., Itoh, T., and Onoda, M. 1995. Preparing "chameleon balls" from natural plants: simple handmade pH indicator and teaching material for chemical equilibrium. Journal of Chemical Education 72: 1131. https://doi.org/10.1021/ed072p1131
  66. Syafinar, R., Gomesh, N., Irwanto, M., Fareq, M., and Irwan, Y. M. 2015. Potential of purple cabbage, coffee, blueberry and turmeric as nature based dyes for dye sensitized solar cell (DSSC). Energy Procedia 79: 799-807. https://doi.org/10.1016/j.egypro.2015.11.569
  67. Reyes, L. F. and Cisneros-Zevallos, L. 2007. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple-and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry 100: 885-894. https://doi.org/10.1016/j.foodchem.2005.11.002
  68. Choi, I., Lee, J. Y., Lacroix, M., and Han, J. 2017. Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry 218: 122-128. https://doi.org/10.1016/j.foodchem.2016.09.050
  69. Chidan Kumar, C. S., Chandraju, S., Ahmad, T., Mythily, R., and Made Gowda, N. M. 2012. Extraction and evaluation of a new acid-base indicator from black gram husk (Vigna mungo). Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 42: 498-501. https://doi.org/10.1080/15533174.2011.613438
  70. Pimpodkar, N., Shikalgar, S., Shinde, N., Bhise, S., and Surve, B. 2014. Rhoeo syathacea and Allamanda cathartic extract as a natural indicator in acidometry-alkalimetry. Asian J. Pharm. Ana. 4: 82-84.
  71. Othman, M., Yusup, A. A., Zakaria, N., and Khalid, K. 2018. Bio-polymer chitosan and corn starch with extract of Hibiscus rosa-sinensis (hibiscus) as PH indicator for visually-smart food packaging. In AIP Conference Proceedings 1985: 050004.
  72. Ahmad, N. A., Heng, L. Y., Salam, F., and Hanifah, S. A. 2018. On-site detection of packaged squid freshness. In AIP Conference Proceedings 1940: 020084.
  73. Ghosh, T. and Katiyar, V. 2018. Cellulose-based hydrogel films for food packaging. Cellulose-Based Superabsorbent Hydrogels, 1-25.
  74. Poonam, G., Garg, S. L., Pramod, J., Uzgare, A. S., and Shikha, S. 2017. Elicitation of easily available and cheap source of natural acid-base indicator for volumetric analysis. Res. J. Chem. Environ. 21: 17-20.
  75. Biswas, N. C. and Dasmohapatra, G. 2017. Clitoria ternatia -A natural indicator of use. Int. J. Pharm. Res. 9: 1-7.
  76. Shukla, V., Kandeepan, G., Vishnuraj, M. R., and Soni, A., 2016. Anthocyanins based indicator sensor for smart packaging application. Agric. Res. 5: 205-209. https://doi.org/10.1007/s40003-016-0211-0
  77. Pereira Jr., V. A., de Arruda, I. N. Q., and Stefani, R. 2015. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time-temperature indicators for application in smart food packaging. Food Hydrocoll. 43: 180-188. https://doi.org/10.1016/j.foodhyd.2014.05.014
  78. Ishak, I., Muhamad, I. I., Marsin, A. M., and Iqbal, T., 2015. Development of purple sweet potato starch base biodegradable film. J. Teknol. 77: 75-78. https://doi.org/10.11113/jt.v77.6914
  79. Luchese, C. L., Frick, J. M., Patzer, V. L., Spada, J. C., and Tessaro, I. C. 2015. Synthesis and characterization of biofilms using native and modified pinhao starch. Food Hydrocolloids 45: 203-210. https://doi.org/10.1016/j.foodhyd.2014.11.015
  80. Golasz, L. B., da Silva, J., and da Silva, S. B., 2013. Film with anthocyanins as an indicator of chilled pork deterioration. Food Sci. Technol. 33: 155-162. https://doi.org/10.1590/S0101-20612013000500023
  81. Veiga-Santos, P., Ditchfield, C., and Tadini, C. C. 2011. Development and evaluation of a novel pH indicator biodegradable film based on cassava starch. J. Appl. Polym. Sci. 120: 1069-1079. https://doi.org/10.1002/app.33255

Cited by

  1. The Application of (+)-Catechin and Polydatin as Functional Additives for Biodegradable Polyesters vol.21, pp.2, 2020, https://doi.org/10.3390/ijms21020414
  2. Selected purple-fleshed sweet potato genotypes with high anthocyanin contents vol.456, pp.None, 2018, https://doi.org/10.1088/1755-1315/456/1/012023
  3. Biodegradable Polyester Materials Containing Gallates vol.12, pp.3, 2018, https://doi.org/10.3390/polym12030677
  4. The Effect of Natural Additives on the Composting Properties of Aliphatic Polyesters vol.12, pp.9, 2020, https://doi.org/10.3390/polym12091856
  5. Innovations in Smart Packaging Concepts for Food: An Extensive Review vol.9, pp.11, 2018, https://doi.org/10.3390/foods9111628
  6. Plant-Origin Stabilizer as an Alternative of Natural Additive to Polymers Used in Packaging Materials vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084012
  7. Anthocyanin Films in Freshness Assessment of Minced Fish vol.51, pp.2, 2021, https://doi.org/10.21603/2074-9414-2021-2-349-362
  8. Anthocyanin food colorant and its application in pH-responsive color change indicator films vol.61, pp.14, 2018, https://doi.org/10.1080/10408398.2020.1776211
  9. Novel Hybrid Polymer Composites Based on Anthraquinone and Eco-Friendly Dyes with Potential for Use in Intelligent Packaging Materials vol.22, pp.22, 2018, https://doi.org/10.3390/ijms222212524