DOI QR코드

DOI QR Code

Antioxidant and tyrosinase inhibitory activity of white beech mushroom (Hypsizygus marmoreus) extracts

흰색 느티만가닥버섯 추출물의 항산화 활성 및 tyrosinase 저해 효과

  • Kim, Su Cheol (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technoligy) ;
  • Kim, Hye Soo (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technoligy) ;
  • Cho, Soo Jeong (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technoligy)
  • 김수철 (경남과학기술대학교 제약공학과) ;
  • 김혜수 (경남과학기술대학교 제약공학과) ;
  • 조수정 (경남과학기술대학교 제약공학과)
  • Received : 2018.11.30
  • Accepted : 2018.12.31
  • Published : 2018.12.31

Abstract

The objective of this study was to evaluate antioxidant effect and tyrosinase inhibitory activity of white beech mushroom (Hypsizygus marmoreus) extracts. The white beech mushroom was extracted into hot water and methanol. Total polyphenol content was highest in the hot water extract ($8.4{\pm}3.27mg\;GAE/g$) compared to the methanol extract ($7.3{\pm}2.85mg\;GAE/g$). The flavonoids contents in hot water and methanol extracts were $3.8{\pm}3.81ug/mg$ and $2.5{\pm}1.95ug/mg$, respectively. The tyrosinase inhibitory activity of extract was increased in a dose dependent manner and tyrosinase inhibitory activity of extract (hot water extract, 69.72%; methanol extract, 52.67% at 40 mg/ml) was lower than those of positive control 2% arbutin (96%). The DPPH radical scavenging activity of the hot water and methanol extract was 80% and 74%, respectively. Hot water extract ($63.34{\pm}1.00uM\;TE/g$) were more effective in ORAC (oxygen radical absorbance capacity) value than methanol extract ($46.33{\pm}0.48uM\;TE/g$). The toxicity of hot water and methanol extracts was investigated using WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulphonate) assay on the B16BL6 melanoma cells.

본 연구에서는 기능성 식의약품 및 화장품 소재로써 흰색 느티만가닥버섯(Hypsizygus marmoreus)의 이용 가능성을 조사하기 위해서 흰색 느티만가닥버섯 열수 추출물과 메탄올 추출물의 항산화 활성 및 tyrosinase 저해 효과를 비교하였다. 열수 추출물과 메탄올 추출물의 총 폴리페놀 함량은 각각 $8.4{\pm}3.27mg\;GAE/g$$7.3{\pm}2.85mg\;GAE/g$이었고 플라보노이드 함량은 각각 $4.8{\pm}3.81ug/mg$$2.5{\pm}1.95ug/mg$이었으며 총 폴리페놀과 플라보노이드 함량 모두 메탄올 추출물보다 열수 추출물에서 높게 나타났다. Tyrosinase 저해 활성은 추출물의 농도에 따라 증가하는 경향을 나타내었으나 양성 대조구로 사용한 2% 알부틴(arbutin)비해 40 mg/ml의 높은 농도에서도 열수 추출물은 69.72%, 메탄올 추출물은 52.67%의 낮은 저해 활성을 나타내었다. 항산화 활성은 DPPH에 의한 라디칼소거 활성을 측정하여 확인하였으며 열수 추출물과 메탄올 추출물의 DPPH 라디칼 소거능은 40 mg/ml의 농도에서도 각각 80%와 74%로 낮게 나타났다. 추출물의 세포독성은 WST-1 assay (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulphonate)를 이용하여 추출물의 처리농도에 따른 B16BL6 melanoma cell의 세포생존율로 확인하였으며 열수 추출물과 메탄올 추출물을 각각 0-40 mg/ml의 농도로 처리하였을 때 B16BL6 melanoma cell은 90% 이상의 생존율을 나타내었으므로 열수 추출물과 메탄올 추출을 모두 B16BL6 melanoma cell에 독성을 나타내지 않는 것으로 판단된다.

Keywords

BSHGBD_2018_v16n4_324_f0001.png 이미지

Fig. 1. Total polyphenolic and flavonoids contents of hot water and methanol extract of white beech mushroom (Hypsizygus marmoreus). Values are expressed as mean±SD (n=3), Values with different superscript letters are significantly different at p<0.05 by Duncan’s multiple range test.

BSHGBD_2018_v16n4_324_f0002.png 이미지

Fig. 2. Tyrosinase inhibitory activity of hot water and methanol extract of white beech mushroom (Hypsizygus marmoreus). Values are expressed as mean±SD (n=3), Values with different superscript letters are significantly different at p<0.05 by Duncan’s multiple range test.

BSHGBD_2018_v16n4_324_f0003.png 이미지

Fig. 3. DPPH-radical scavenging activity of hot water and methanol extract of white beech mushroom (Hypsizygus marmoreus). Values are expressed as mean±SD (n=3), Values with different superscript letters are significantly different at p<0.05 by Duncan’s multiple range test.

BSHGBD_2018_v16n4_324_f0004.png 이미지

Fig. 4. Oxygen radical absorbance capacity (ORAC) of hot water and methanol extract of white beech mushroom (Hypsizygus marmoreus). Values are expressed as mean±SD (n=5), values with different superscript letters are significantly different at p<0.05 by Duncan’s multiple range test.

BSHGBD_2018_v16n4_324_f0005.png 이미지

Fig. 5. Effects of white beech mushroom (Hypsizygus marmoreus) extracts on cell proliferation in B16BL6 mouse melanoma cell. The B16BL6 mouse melanoma cell was incubated for 24 hr in DMEM media with different concentration of hot water and methanol extract of white beech mushroom (Hypsizygus marmoreus). The cell proliferation was determined using WST-1 assay. Values are expressed as mean±SD (n=3), Values with different superscript letters are significantly different at p<0.05 by Duncan’s multiple range test.

References

  1. Aburjai T, Natshen FM. 2003. Plants used in cosmetics. Phytother Res 17: 987-1000. https://doi.org/10.1002/ptr.1363
  2. Aitken RJ, Bukingham D, Harkiss D. 1993. Use of xanthine oxidase free radical generating system to investigate the cytotoxic effect of reactive oxygen species on human spermatozoa. J Reprod Fertil 97: 441-450. https://doi.org/10.1530/jrf.0.0970441
  3. Barros L, Ferreira MJ, Ferreira ICFR, Baptista P. 2007. Total phenols, ascorbic acid, ${\beta}$-carotene and lycopene in portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103: 413-419. https://doi.org/10.1016/j.foodchem.2006.07.038
  4. Baublis AJ, Lu C, Clydesdale FM, Decker EA. 2000. Potential of wheat-based breakfast grains as a source of dietary antioxidants. J Am Coll Nutr 19: 308S-311S. https://doi.org/10.1080/07315724.2000.10718965
  5. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  6. Cao G, Alessio HM, Cutler RG. 1993. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14: 303-311. https://doi.org/10.1016/0891-5849(93)90027-R
  7. Cha JY. 2009. Functional components and biological activities of marketing black garlic. MS Thesis. Gyengsang National University.
  8. Chang ST, Buswell JA, Chiu SW. 1993. Mushroom biology and mushroom product. The Chinese University Press. Hong Kong pp. 3-17.
  9. Chang T, Miles PG. 1989. Edible mushrooms and their cultivation. CRC press. pp. 27-40.
  10. Chen HY, Lin YC, Yen GC. 2007. Antioxidant activity and free radical scavenging capacity of extracts from guava (Psidium guauva L.) leaves. Food Chem 101: 686-694. https://doi.org/10.1016/j.foodchem.2006.02.047
  11. Droge W. 2001. Free radicals in the physiological control of cell function. Physiol Rev 82: 47-951.
  12. Dubost NJ, Ou B, Beelman RB. 2007. Quantification of polyphenols and ergothioneine incultivated mushrooms and correlation to total antioxidant capacity. Food Chem 105: 727-735. https://doi.org/10.1016/j.foodchem.2007.01.030
  13. Ferreira I, Barros L, Abreu R. 2009. Antioxidants in wild mushrooms. Current med Chem 16: 1543-1560. https://doi.org/10.2174/092986709787909587
  14. Francoeur AM, Assalian A. 1996. Microcat: A novel cell proliferation and cytotoxicity assay based on WST-1. Biochemica 3: 19-25.
  15. Guk MH, Kim DH, Lee C, Jeong ES, Choi EJ, Lee JS, Lee TS. 2013. Antioxidant and skin whitening effects of inonotus obliquus methanol extract. J Mushroom Sci Prod 11: 99-106. https://doi.org/10.14480/JM.2013.11.2.099
  16. Halliewell B, Gutterridge JM. 1990. Roles of free radicals and catalytic metal ions in human disease. An overreview, Methods Enzymol. Fleischer, S. and packer, L. (eds.). Academic Press, New York, USA. 186: 1-12.
  17. Hearing VJ, Ekel TM. 1976. Mammalian tyrosinase. Biochem J 157: 549-557. https://doi.org/10.1042/bj1570549
  18. Hirase S, Nakai S, Akstus T. 1976. Sturucture studies on the antitumor active polysaccharides from Coriolus versicolor (Basidiomycetes). I. Fractionation with barium hydroxide. Yakugaku Zasshi. 96: 413-418. https://doi.org/10.1248/yakushi1947.96.4_413
  19. Ikekawa T. 1995. Bunashimeji, Hypsizygus marmoreus antitumor activity of extractsand polysaccharides. Food Rev Int 11: 207-209. https://doi.org/10.1080/87559129509541034
  20. Jo SH, Kim TH, Yu YB, Oh JN, Jang MJ, Park KM. 2012. A comparative study on the physiological activities of Auricularia spp. Kor J Food Sci Technol 44: 350-355. https://doi.org/10.9721/KJFST.2012.44.3.350
  21. Kim DJ, Oh S K, Yoon MR, Chun AR, Hong HC, Lee JS, Kim YK. 2010. Antioxidant compounds and antioxidant activities of the 70% ethanol extracts from brown and milled rice by cultivar. J Korean Soc Food Sci Nutr 39: 467-473. https://doi.org/10.3746/jkfn.2010.39.3.467
  22. Kim SC, Ryu HM, Jung SM, Lee YH, Kim HS, Kim JO, Cho YU, Cho SJ. 2013. Antioxidant and tyrosinase inhibitory activity of Hypsizygus marmoreus (brown cultivar) methanol extracts. J Mushroom Sci Prod 11: 254-260. https://doi.org/10.14480/JM.2013.11.4.254
  23. Kim SC, Kwon HS, Kim CH, Kim HS, Lee CY, Cho SJ. 2016. Comparison of Antioxidant Activities of Pileusand Stipe from White Beech Mushrooms (Hypsizygus marmoreus). J Life Sci 26: 928-935. https://doi.org/10.5352/JLS.2016.26.8.928
  24. Lee M, Oh SI. 2007. Antioxidative stress and antimutagenic effects of Lentinus edodes ethanol extracts. Korean J Food & Nutr 20: 341-348.
  25. Lee JS, Bolormaa Z, Kim MK, Seo GS, Lee YW. 2011. Screening and physiological functionality of Hypsizygus marmoreus (White Cultivar) fruiting body. Kor J Mycol 39: 185-188. https://doi.org/10.4489/KJM.2010.39.3.185
  26. Makato O. 1986. Studies on products of browning reaction:Antioxidative activities of products of browning reaction prepared fromglucosamine. Jap J Nutr 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  27. Matsuzawa T, Sano M, Tomita I, Saitoh H, Ohkawa M, Ikekawa T. 1998. Studies on antioxidants of Hypsizygus marmoreus. II. Effects of Hypsizygus marmoreus for antioxidants activites of tumor-bearing mice. Yakugaku Zasshi 118: 476-481. https://doi.org/10.1248/yakushi1947.118.10_476
  28. Nita A, Young AR. 2005. Melanogenesis: A photoprotective response to DNA damage? Mutation Research 571: 121-132. https://doi.org/10.1016/j.mrfmmm.2004.11.016
  29. Ohashi H. 2010. Trends of mushrrom production and marketing. InL "Annual report of mushroom 2010" (ed. by Ohashi, H.). p. 18. Plant's world Co. Ltd. Tokyo. Japan.
  30. Singleton VL. 1981. Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv Food Res 27: 149-242.
  31. Tomita K, Oda N, Ohbayashi M, Kamei H, Miyaki T, Oki T. 1990. A new screening method for melanin biological synthesis inhibitor using Streptomyces bikiniensis. J Antibiotics 43: 1601-1605. https://doi.org/10.7164/antibiotics.43.1601
  32. Verckei A, Toncsev H, Feher J, Hajdu E. 1992. Relationship between the extent of coronary artery disease and indicators of free radical activity. Clin Cardiol 15: 706-707. https://doi.org/10.1002/clc.4960150920
  33. Yang CS, Landau JM., Hung MT, Newmak HL. 2001. Inhibition of carcnogeneses by dietary polyphenolic compounds. Annu Rev Nutr 21: 381-406. https://doi.org/10.1146/annurev.nutr.21.1.381
  34. Zanabaatar B, Kang MG, Seo GS, Lee YW, Lee JS. 2012. Analysis of nutritional characteristics and physiological functionality of Hypsizygus marmoreus (Brown cultivar). Kor J Mycol 40: 104-108. https://doi.org/10.4489/KJM.2012.40.2.104
  35. Zhishen J, Mengcheng T, Jianming W. 1998. The determination flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64: 555-559.