DOI QR코드

DOI QR Code

Flip Chip Process on the Local Stiffness-variant Stretchable Substrate for Stretchable Electronic Packages

신축성 전자패키지용 강성도 국부변환 신축기판에서의 플립칩 공정

  • Park, Donghyeun (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 박동현 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2018.12.21
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

A Si chip with the Cu/Au bumps of $100-{\mu}m$ diameter was flip-chip bonded using different anisotropic conductive adhesives (ACAs) onto the local stiffness-variant stretchable substrate consisting of polydimethylsiloxane (PDMS) and flexible printed circuit board (FPCB). The average contact resistances of the flip-chip joints processed with ACAs containing different conductive particles were evaluated and compared. The specimen, which was flip-chip bonded using the ACA with Au-coated polymer balls as conductive particles, exhibited a contact resistance of $43.2m{\Omega}$. The contact resistance of the Si chip, which was flip-chip processed with the ACA containing SnBi solder particles, was measured as $36.2m{\Omega}$, On the contrary, an electric open occurred for the sample bonded using the ACA with Ni particles, which was attributed to the formation of flip-chip joints without any entrapped Ni particles because of the least amount of Ni particles in the ACA.

강성도가 서로 다른 polydimethylsiloxane (PDMS) 탄성고분자와 flexible printed circuit board (FPCB)로 이루어진 PDMS/FPCB 구조의 강성도 국부변환 신축기판에 $100{\mu}m$ 직경의 Cu/Au 범프를 갖는 Si 칩을 anisotropic conductive adhesive (ACA)를 사용하여 플립칩 본딩 후, ACA내 전도성 입자에 따른 플립칩 접속저항을 비교하였다. Au 코팅된 폴리머 볼을 함유한 ACA를 사용하여 플립칩 본딩한 시편은 $43.2m{\Omega}$의 접속저항을 나타내었으며, SnBi 솔더입자를 함유한 ACA로 플립칩 본딩한 시편은 $36.2m{\Omega}$의 접속저항을 나타내었다. 반면에 Ni 입자를 함유한 ACA를 사용하여 플립칩 본딩한 시편에서는 전기적 open이 발생하였는데, 이는 ACA내 Ni 입자의 함유량이 부족하여 entrap된 Ni 입자가 하나도 없는 플립칩 접속부가 발생하였기 때문이다.

Keywords

MOKRBW_2018_v25n4_155_f0001.png 이미지

Fig. 1. Schematic illustration of the process flow for a local stiffness-variant stretchable substrate consisting of soft PDMS, hard PDMS, and FPCB: (a) attach the acrylicsilicone double-sided tape to FPCB, (b) attach the FPCB to a partially cured hard PDMS using the silicone adhesive of the double-sided tape, (c) fully cure the hard PDMS and process flip chip bonding, and (d) after placing the flip-chip bonded hard PDMS/FPCB into a mold, pour and fully cure the soft PDMS.

MOKRBW_2018_v25n4_155_f0002.png 이미지

Fig. 2. Optical image of the stretchable PDMS/FPCB substrate.

MOKRBW_2018_v25n4_155_f0003.png 이미지

Fig. 3. Schematic illustration of the stretchable substrate consisting of soft PDMS, hard PDMS, and FPCB on which a Si chip is mounted by flip chip bonding.

MOKRBW_2018_v25n4_155_f0004.png 이미지

Fig. 4. Fabrication process of a Si chip: (a) sputtering of Ti/Cu metallization, (b) photoresist patterning, (c) Cu and Au electroplating, (d) photoresist patterning, (e) Ti/Cu electrode formation, and (f) dispensing ACA for flip chip bonding.

MOKRBW_2018_v25n4_155_f0005.png 이미지

Fig. 5. Top-view optical image and cross-sectional scanning electron micrograph of the flip-chip bonded specimen that was processed on the PDMS/FPCB substrate with a bonding pressure of (a) 10 MPa, (b) 50 MPa, and (c) 100 MPa.

MOKRBW_2018_v25n4_155_f0006.png 이미지

Fig. 6. Scanning electron micrographs of (a) Au-coated polymer balls, (b) Ni particle, and (c) SnBi solder particle contained in each ACA.

MOKRBW_2018_v25n4_155_f0007.png 이미지

Fig. 7. Cross-sectional scanning electron micrographs of the flipchip joints processed with the ACA containing (a) Aucoated polymer balls, (b) Ni particles, and (c) SnBi solder particles.

MOKRBW_2018_v25n4_155_f0008.png 이미지

Fig. 8. Optical micrographs of (a) Au-coated polymer balls, (b) Ni particles, and (c) SnBi solder particles contained in each ACA.

MOKRBW_2018_v25n4_155_f0009.png 이미지

Fig. 9. Optical micrographs of the ACA conductive particles entrapped between the chip bump and the glass substrate. ACA conductive particles are Au-coated polymer balls, Ni particles for (c) and (d), and SnBi solder particles for (e) and (f).

MOKRBW_2018_v25n4_155_f0010.png 이미지

Fig. 10. Relative distribution frequency of the number of Ni particles entrapped between a chip bump and the glass substrate for total 42 chip bumps.

MOKRBW_2018_v25n4_155_f0011.png 이미지

Fig. 11. Optical Images of the soft PDMS/hard PDMS/FPCB stretchable substrate, where a Si chip was flip-chip bonded, at an applied strain of (a) 0% and (b) 30%.

MOKRBW_2018_v25n4_155_f0012.png 이미지

Fig. 12. Resistance change ratio, ΔR/Ro, of the Si chip, which was flip-chip bonded to the soft PDMS/hard PDMS/FPCB stretchable substrate, during cycled stretching deformation of the substrate for 10 times in the 0~30% tensile strain interval.

References

  1. H. A. Oh, D. Park, S. J. Shin, and T. S. Oh, "Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure", J. Microelectron. Packag. Soc., 22(4), 117 (2015). https://doi.org/10.6117/kmeps.2015.22.4.117
  2. H. A. Oh, D. Park, K. S. Hahn, and T. S. Oh, "Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", 22(4), 91 (2015). https://doi.org/10.6117/kmeps.2015.22.4.091
  3. J. Y. Choi, D. W. Park, and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014). https://doi.org/10.6117/kmeps.2014.21.4.125
  4. J. Y. Choi and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging", J. Microelectron. Packag. Soc., 20(4), 17 (2013). https://doi.org/10.6117/KMEPS.2013.20.4.017
  5. M. Gonzalez, B. Vandervelde, W. Chistianens, Y. Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. van der Sluis, and P.H.M. Timmermans, "Thermo-Mechanical Analysis of Flexible and Stretchable Systems", Proc. 11th International Conference of Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (Euro-SimE), Berlin, 1, Institute of Electrical and Electronics Engineers (2010).
  6. J. H. Ahn, H. Lee, and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013). https://doi.org/10.6117/kmeps.2013.20.2.001
  7. J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang, and J. A. Rogers, "Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates", App. Phys. Lett., 93, 013109 (2008). https://doi.org/10.1063/1.2955829
  8. T. Loher, D. Manessis, R. Heinrich, B. Schmied, J. Vanfleteren, J. DeBaets, A. Ostmann, and H. Reichl, "Stretchable Electronic Systems", Proc. 59th Electronic Components and Technology Conference (ECTC), San Diego, 893, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2009).
  9. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, "A Rubberlike Stretchable Active Matrix Using Elastic Conductors", Science, 321, 1468 (2008). https://doi.org/10.1126/science.1160309
  10. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
  11. M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren, "Design of Metal Interconnects for Stretchable Electronic Circuits", Microelectron. Reliab., 48, 825 (2008). https://doi.org/10.1016/j.microrel.2008.03.025
  12. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, "Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors", Nature Mater., 8, 494 (2009). https://doi.org/10.1038/nmat2459
  13. J. H. Ahn and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
  14. D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). https://doi.org/10.1002/adma.200801788
  15. J. Y. Choi, D. H. Park, and T. S. Oh, "Chip Interconnection Process for Smart Fabrics Using Flip-Chip Bonding of SnBi Solder", J. Microelectron. Packag. Soc., 19(3), 71 (2012). https://doi.org/10.6117/KMEPS.2012.19.3.071
  16. D. Park and T. S. Oh, "Interfacial Adhesion Enhancement Process of Local Stiffness-variant Stretchable Substrates for Stretchable Electronic Packages", submitted to J. Microelectron. Packag. Soc., 25(4) (2018). https://doi.org/10.6117/KMEPS.2018.25.4.025
  17. C. R. Barrett, A. S. Tetelman, and W. D. Nix, "The Principles of Engineering Materials", pp.316-325, Prentice Hall, Inc., Englewood Cliffs (1973).
  18. S. Popovics, "Quantitative Deformation Model for Two-phase Composites Including Concrete", Mater. Struct., 20, 171 (1987). https://doi.org/10.1007/BF02472733
  19. S. Popovics and M. R. A. Erdey, "Estimation of the Modulus of Elasticity of Concrete-like Composite Materials", Mater. Struct., 3, 253 (1970).
  20. D. Park, K. S. Han, and T. S. Oh, "Comparison of Flip-Chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part II. Flip-Chip Bonding on Compliant Substrates", Mater. Trans., 58(8), 1217 (2017). https://doi.org/10.2320/matertrans.M2017066
  21. D. Park and T. S. Oh, "Comparison of Flip-Chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part I. Flip-Chip Bonding on Rigid Substrates", Mater. Trans., 58(8), 1212 (2017). https://doi.org/10.2320/matertrans.M2017065
  22. J. Y. Choi and T. S. Oh, "Contact Resistance Comparison of Flip-Chip Joints Produced with Anisotropic Conductive Adhesive and Nonconductive Adhesive for Smart Textile Applications', Mater. Trans., 56(10), 1711 (2015). https://doi.org/10.2320/matertrans.M2015106
  23. J. Y. Choi and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging', J. Microelectron. Packag. Soc., 20(4), 17 (2013). https://doi.org/10.6117/KMEPS.2013.20.4.017

Cited by

  1. Island-Bridge 구조의 강성도 경사형 신축 전자패키지의 유효 탄성계수 및 변형거동 분석 vol.26, pp.4, 2019, https://doi.org/10.6117/kmeps.2019.26.4.039
  2. PDMS 기반 강성도 경사형 신축 전자패키지의 신축변형-저항 특성 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.047
  3. 강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.055
  4. PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.119
  5. PDMS로 충진된 신축열전모듈의 신축특성과 발전특성 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.149
  6. PDMS로 충진된 신축열전모듈의 신축특성과 발전특성 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.149