DOI QR코드

DOI QR Code

Regulation of gene expression by histone-like proteins in bacteria

박테리아의 히스톤 유사 단백질에 의한 유전자 발현 조절

  • Park, Shinae (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University) ;
  • Lee, Jung-Shin (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
  • 박신애 (강원대학교 분자생명과학과) ;
  • 이정신 (강원대학교 분자생명과학과)
  • Received : 2018.02.06
  • Accepted : 2018.03.08
  • Published : 2018.03.31

Abstract

A prokaryotic cell has various histone-like proteins also known as nucleoid-associated proteins (NAPs). These proteins bind AT-rich sequence at DNA, which induce DNA wrapping, bending, and bridging, and subsequently regulate the gene expression in bacteria. Because NAPs function in transcriptional silencing of virulence genes, it is important to study their roles in gene silencing and specific mechanisms of these proteins. In this review, we discussed two well-known NAPs, H-NS, and HU, and summarized their roles for gene expression in Escherichia coli and Salmonella Typhimurium. Through the oligomerization and filamentation of H-NS, it represses the expression of virulence genes in human pathogenic bacteria, such as Salmonella Typhimurium, and it works with other NAPs positively or negatively. Recently, H-NS also regulates typhoid toxin expression, which causes typhoid fever and systemic disease in human. Additionally, HU regulates the expression of genes related to both virulence and physiology of Salmonella. Therefore, we suggest that NAPs like H-NS and HU are crucial factors to reveal the molecular mechanisms of virulence gene expression in bacteria.

원핵 세포는 핵양체 결합 단백질(NAP)로 알려진 다양한 히스톤 유사 단백질을 가지고 있다. 이들은 DNA의 AT-rich 서열에 결합하여, DNA 자체를 감싸거나, 구부리거나, 떨어져 있는 DNA 가닥을 연결시키는 다리 역할을 하여, 결국에는 원핵 생물의 유전자 발현을 조절한다. NAP는 특히 전사의 억제 기능을 가지고 있기 때문에, 유전자 발현 억제에 있어서 이들의 역할과, 구체적인 메커니즘을 밝히는 것을 매우 중요한 일이다. 본 논문에서는 잘 알려져 있는 NAP인 H-NS와 HU에 대하여 정리하였고, 특히 E. coli와 Salmonella Typhimurium에서 이들의 유전자 발현에 대한 기능을 요약하였다. H-NS는 이들의 올리고머화와 필라멘트 구조 형성을 통하여 Salmonella와 같은 사람에 감염하는 병원성 세균의 독성유전자 발현을 억제할 수 있고, 이런 기능을 수행하였을 때 다른 NAP와 함께 작용할 수 있다. 최근에 H-NS는 사람에게 typhoid fever와 systemic disease를 발생시키는 독성물질인, typhoid toxin의 발현 또한 조절할 수 있음이 밝혀졌다. Salmonella에서 HU 또한 독성 유전자뿐만 아니라, 이들의 생리적 기능에 중요한 유전자들의 발현을 조절할 수 있다. 따라서, H-NS와 HU와 같은 NAP들이 원핵 생물의 독성 유전자 발현의 분자적인 메커니즘을 밝히는데 중요한 요소임을 제시한다.

Keywords

References

  1. Amit, R., Oppenheim A.B., and Stavans, J. 2003. Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys. J. 84, 2467-2473. https://doi.org/10.1016/S0006-3495(03)75051-6
  2. Arold, S.T., Leonard, P.G., Parkinson, G.N., and Ladbury, J.E. 2010. H-NS forms a superhelical protein scaffold for DNA condensation. Proc. Natl. Acad. Sci. USA 107, 15728-15732. https://doi.org/10.1073/pnas.1006966107
  3. Bae, W., Jones, P.G., and Inouye, M. 1997. CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression. J. Bacteriol. 179, 7081-7088. https://doi.org/10.1128/jb.179.22.7081-7088.1997
  4. Balandina, A., Claret, L., Hengge-Aronis, R., and Rouviere-Yaniv, J. 2001. The Escherichia coli histone-like protein HU regulates rpoS translation. Mol. Microbiol. 39, 1069-1079. https://doi.org/10.1046/j.1365-2958.2001.02305.x
  5. Bannister, A.J. and Kouzarides, T. 2011. Regulation of chromatin by histone modifications. Cell Res. 21, 381-395 https://doi.org/10.1038/cr.2011.22
  6. Bloch, V., Yang, Y., Margeat, E., Chavanieu, A., Auge, M.T., Robert, B., Arold, S., Rimsky, S., and Kochoyan, M. 2003. The H-NS dimerization domain defines a new fold contributing to DNA recognition. Nat. Struct. Biol. 10, 212-218. https://doi.org/10.1038/nsb904
  7. Bustamante, V.H., Martinez, L.C., Santana, F.J., Knodler, L.A., Steele-Mortimer, O., and Puente, J.L. 2008. HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. Proc. Natl. Acad. Sci. USA 105, 14591-14596. https://doi.org/10.1073/pnas.0801205105
  8. Cerdan, R., Bloch, V., Yang, Y., Bertin, P., Dumas, C., Rimsky, S., Kochoyan, M., and Arold, S.T. 2003. Crystal structure of the N-terminal dimerisation domain of VicH, the H-NS-like protein of Vibrio cholerae. J. Mol. Biol. 334, 179-185. https://doi.org/10.1016/j.jmb.2003.09.051
  9. Claret, L. and Rouviere-Yaniv, J. 1997. Variation in HU composition during growth of Escherichia coli, the heterodimer is required for long term survival. J. Mol. Biol. 273, 93-104. https://doi.org/10.1006/jmbi.1997.1310
  10. Dame, R.T., Luijsterburg, M.S., Krin, E., Bertin, P.N., Wagner, R., and Wuite, G.J. 2005. DNA bridging, a property shared among H-NS-like proteins. J. Bacteriol. 187, 1845-1848. https://doi.org/10.1128/JB.187.5.1845-1848.2005
  11. Dillon, S.C. and Dorman, C.J. 2010. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 8, 185-195. https://doi.org/10.1038/nrmicro2261
  12. Dorman, C.J. and Deighan, P. 2003. Regulation of gene expression by histone-like proteins in bacteria. Curr. Opin. Genet. Dev. 13, 179-184. https://doi.org/10.1016/S0959-437X(03)00025-X
  13. Drlica, K. and Rouviere-Yaniv, J. 1987. Histonelike proteins of bacteria. Microbiol. Rev. 51, 301-319.
  14. Ellermeier, J.R. and Slauch, J.M. 2007. Adaptation to the host environment, regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr. Opin. Microbiol. 10, 24-29. https://doi.org/10.1016/j.mib.2006.12.002
  15. Esposito, D., Petrovic, A., Harris, R., Ono, S., Eccleston, J.F., Mbabaali, A., Haq, I., Higgins, C.F., Hinton, J.C., Driscoll, P.C., et al. 2002. H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. J. Mol. Biol. 324, 841-850. https://doi.org/10.1016/S0022-2836(02)01141-5
  16. Fass, E. and Groisman, E.A. 2009. Control of Salmonella pathogenicity island-2 gene expression. Curr. Opin. Microbiol. 12, 199-204. https://doi.org/10.1016/j.mib.2009.01.004
  17. Fowler, C.C. and Galan, J.E. 2018. Decoding a Salmonella typhi regulatory network that controls typhoid toxin expression within human cells. Cell. Host Microbe 23, 65-76. https://doi.org/10.1016/j.chom.2017.12.001
  18. Giangrossi, M., Giuliodori, A.M., Gualerzi, C.O., and Pon, C.L. 2002. Selective expression of the beta-subunit of nucleoid-associated protein HU during cold shock in Escherichia coli. Mol. Microbiol. 44, 205-216. https://doi.org/10.1046/j.1365-2958.2002.02868.x
  19. Gordon, B.R., Li, Y., Cote, A., Weirauch, M.T., Ding, P., Hughes, T.R., Navarre, W.W., Xia, B., and Liu, J. 2011. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc. Natl. Acad. Sci. USA 108, 10690-10695. https://doi.org/10.1073/pnas.1102544108
  20. Grainger, D.C. 2016. Structure and function of bacterial H-NS protein. Biochem. Soc. Trans. 44, 1561-1569. https://doi.org/10.1042/BST20160190
  21. Johansson, J. and Uhlin, B.E. 1999. Differential protease-mediated turnover of H-NS and StpA revealed by a mutation altering protein stability and stationary-phase survival of Escherichia coli. Proc. Natl. Acad. Sci. USA 96, 10776-10781. https://doi.org/10.1073/pnas.96.19.10776
  22. Jones, P.G., VanBogelen, R.A., and Neidhardt, F.C. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169, 2092-2095. https://doi.org/10.1128/jb.169.5.2092-2095.1987
  23. Kahramanoglou, C., Seshasayee, A.S., Prieto, A.I., Ibberson, D., Schmidt, S., Zimmermann, J., Benes, V., Fraser, G.M., and Luscombe, N.M. 2011. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res. 39, 2073-2091.
  24. Kano, Y., Osato, K., Wada, M., and Imamoto, F. 1987. Cloning and sequencing of the HU-2 gene of Escherichia coli. Mol. Gen. Genet. 209, 408-410. https://doi.org/10.1007/BF00329674
  25. Kano, Y., Yoshino, S., Wada, M., Yokoyama, K., Nobuhara, M., and Imamoto, F. 1985. Molecular cloning and nucleotide sequence of the HU-1 gene of Escherichia coli. Mol. Gen. Genet. 201, 360-362. https://doi.org/10.1007/BF00425687
  26. Kotlajich, M.V., Hron, D.R., Boudreau, B.A., Sun, Z., Lyubchenko, Y.L., and Landick, R. 2015. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. Elife 4, e04970.
  27. La Teana, A., Brandi, A., Falconi M., Spurio, R., Pon, C.L., and Gualerzi, C.O. 1991. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc. Natl. Acad. Sci. USA 88, 10907-10911 https://doi.org/10.1073/pnas.88.23.10907
  28. Lim, C.J., Lee, S.Y., Kenney, L.J., and Yan, J. 2012. Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing. Sci. Rep. 2, 509. https://doi.org/10.1038/srep00509
  29. Liu, Y., Chen, H., Kenney, L.J., and Yan, J. 2010. A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. Genes Dev. 24, 339-344. https://doi.org/10.1101/gad.1883510
  30. Lucchini, S., Rowley, G., Goldberg, M.D., Hurd, D., Harrison, M., and Hinton, J.C. 2006. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog. 2, e81. https://doi.org/10.1371/journal.ppat.0020081
  31. Mangan, M.W., Lucchini, S., Croinin, T.O., Fitzgerald, S., Hinton, J.C., and Dorman, C.J. 2011. Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in Salmonella enterica serovar Typhimurium. Microbiology 157, 1075-1087. https://doi.org/10.1099/mic.0.046359-0
  32. Martinez, L.C., Banda, M.M., Fernandez-Mora, M., Santana, F.J., and Bustamante, V.H. 2014. HilD induces expression of Salmonella pathogenicity island 2 genes by displacing the global negative regulator H-NS from ssrAB. J. Bacteriol. 196, 3746-3755. https://doi.org/10.1128/JB.01799-14
  33. Miano, A., Losso, M.A., Gianfranceschi, G.L., and Gualerzi, C.O. 1982. Proteins from the prokaryotic nucleoid I. Effect of NS1 and NS2 (HU) proteins on the thermal stability of DNA. Biochem. Int. 5, 415-422.
  34. Mitta, M., Fang, L., and Inouye, M. 1997. Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol. Microbiol. 26, 321-335. https://doi.org/10.1046/j.1365-2958.1997.5771943.x
  35. Navarre, W.W., Porwollik, S., Wang, Y., McClelland, M., Rosen, H., Libby, S.J., and Fang, F.C. 2006. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313, 236-238. https://doi.org/10.1126/science.1128794
  36. Nieto, J.M., Madrid, C., Miquelay, E., Parra, J.L., Rodriguez, S., and Juarez, A. 2002. Evidence for direct protein-protein interaction between members of the enterobacterial Hha/YmoA and H-NS families of proteins. J. Bacteriol. 184, 629-635. https://doi.org/10.1128/JB.184.3.629-635.2002
  37. Nieto, J.M., Madrid, C., Prenafeta, A., Miquelay, E., Balsalobre, C., Carrascal, M., and Juarez, A. 2000. Expression of the hemolysin operon in Escherichia coli is modulated by a nucleoid-protein complex that includes the proteins Hha and H-NS. Mol. Gen. Genet. 263, 349-358. https://doi.org/10.1007/s004380051178
  38. Oberto, J., Nabti, S., Jooste, V., Mignot, H., and Rouviere-Yaniv, J. 2009. The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS One 4, e4367. https://doi.org/10.1371/journal.pone.0004367
  39. Paytubi, S., Madrid, C., Forns, N., Nieto, J.M., Balsalobre, C., Uhlin, B.E., and Juarez, A. 2004. YdgT, the Hha paralogue in Escherichia coli, forms heteromeric complexes with H-NS and StpA. Mol. Microbiol. 54, 251-263. https://doi.org/10.1111/j.1365-2958.2004.04268.x
  40. Rouviere-Yaniv, J. and Gros, F. 1975. Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc. Natl. Acad. Sci. USA 72, 3428-3432. https://doi.org/10.1073/pnas.72.9.3428
  41. Schneider, D.A., Ross, W., and Gourse, R.L. 2003. Control of rRNA expression in Escherichia coli. Curr. Opin. Microbiol. 6, 151-156. https://doi.org/10.1016/S1369-5274(03)00038-9
  42. Schroder, O. and Wagner, R. 2000. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. J. Mol. Biol. 298, 737-748. https://doi.org/10.1006/jmbi.2000.3708
  43. Singh, K., Milstein, J.N., and Navarre, W.W. 2016. Xenogeneic silencing and its impact on bacterial genomes. Annu. Rev. Microbiol. 70, 199-213. https://doi.org/10.1146/annurev-micro-102215-095301
  44. Spurio, R., Falconi, M., Brandi, A., Pon, C.L., and Gualerzi, C.O. 1997. The oligomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending. EMBO J. 16, 1795-1805. https://doi.org/10.1093/emboj/16.7.1795
  45. Swinger, K.K., Lemberg, K.M., Zhang, Y., and Rice, P.A. 2003. Flexible DNA bending in HU-DNA cocrystal structures. EMBO J. 22, 3749-3760. https://doi.org/10.1093/emboj/cdg351
  46. Ueda, T., Takahashi, H., Uyar, E., Ishikawa, S., Ogasawara, N., and Oshima, T. 2013. Functions of the Hha and YdgT proteins in transcriptional silencing by the nucleoid proteins, H-NS and StpA, in Escherichia coli. DNA Res. 20, 263-271. https://doi.org/10.1093/dnares/dst008
  47. Ueguchi, C., Seto, C., Suzuki, T., and Mizuno, T. 1997. Clarification of the dimerization domain and its functional significance for the Escherichia coli nucleoid protein H-NS. J. Mol. Biol. 274, 145-151. https://doi.org/10.1006/jmbi.1997.1381
  48. Ueguchi, C., Suzuki, T., Yoshida, T., Tanaka, K., and Mizuno, T. 1996. Systematic mutational analysis revealing the functional domain organization of Escherichia coli nucleoid protein H-NS. J. Mol. Biol. 263, 149-162. https://doi.org/10.1006/jmbi.1996.0566
  49. Walthers, D., Carroll, R.K., Navarre, W.W., Libby, S.J., Fang, F.C., and Kenney, L.J. 2007. The response regulator SsrB activates expression of diverse Salmonella pathogenicity island 2 promoters and counters silencing by the nucleoid-associated protein H-NS. Mol. Microbiol. 65, 477-493. https://doi.org/10.1111/j.1365-2958.2007.05800.x
  50. Winardhi, R.S., Fu, W., Castang, S., Li, Y., Dove, S.L., and Yan, J. 2012. Higher order oligomerization is required for H-NS family member MvaT to form gene-silencing nucleoprotein filament. Nucleic Acids Res. 40, 8942-8952. https://doi.org/10.1093/nar/gks669