DOI QR코드

DOI QR Code

Cold shock sensitive growth of Bacillus subtilis mutants deleted for genes involved in fatty acid synthesis

지방산 생합성 관련 유전자 결손 Bacillus subtilis 균주들의 저온충격 민감성 생장

  • Kim, Do Hyung (Department of Life Science and Technology, Pai Chai University) ;
  • Lee, Sang Soo (Department of Life Science and Technology, Pai Chai University)
  • Received : 2017.07.26
  • Accepted : 2017.10.16
  • Published : 2018.03.31

Abstract

To investigate the role of bkdR, sigL, yplP, and des genes which were known to be involved in fatty acid synthesis and sensitive at low temperature, deletion mutants of Bacillus subtilis CU1065 and JH642 were constructed. To determine the low temperature sensitivity of these genes, we compared the growth curves of cells at $37^{\circ}C$ and $15^{\circ}C$. At $37^{\circ}C$, wild type and deletion mutants showed almost similar growth but only bkdR deletion strain at $15^{\circ}C$ showed very slow growing compared with wild type. At $15^{\circ}C$ sigL and yplP deletions were somewhat slower or similar to those of wild type strain. Double and triple mutants for bkdR, sigL, yplP deletions were constructed and grown at $20^{\circ}C$ in LB agar to investigate cold sensitive growth. Double or triple deletions including bkdR deletion showed cold sensitive growing. In order to identify more clearly cold sensitive growth, the experiments were carried out under cold shock conditions in which the temperature was lowered from $37^{\circ}C$ to $15^{\circ}C$ at the point of 0.4 optical densities at 600 nm. In these cold shock experiments, only bkdR deletion showed significantly lower growing and additional des deletion increases cold sensitivity. The bkdR activates the bkd operon, which catabolized isoleucine, valine and leucine, amino acids and produce precursors for the synthesis of branched fatty acids. At cold shock growing of bkdR deletion strain, isoleucine recovered cold sensitivity of bkdR deletion but valine did not restore cold sensitivity. Isoleucine is used as a precursor for the synthesis of anteiso-branched fatty acids. On the other hand, valine is used as a precursor for the synthesis of iso-branched fatty acids. This indicates that anteiso-branched fatty acid plays an important role at the cold shock condition.

저온 환경에서의 생장에 영향을 주는 지방산 합성 관련 유전자 bkdR, sigL, yplP, des들의 역할을 알아보기 위하여 각각 유전자들이 상실된 Bacillus subtilis CU1065와 JH642 돌연변이들을 제조하였다. 이들 유전자들의 저온 민감성을 확인하기 위해 $37^{\circ}C$$15^{\circ}C$에서 세포들의 생장을 측정하였다. $37^{\circ}C$에서 야생형과 결실 돌연변이 균주는 거의 유사한 정도의 생장을 보였으나, $15^{\circ}C$에서 오직bkdR 결실 돌연변이만이 야생형에 비해 매우 느린 생장이 관찰되었으며 sigL, yplP 결실의 경우 야생형에 비해 다소 느리거나 유사한 생장을 보였다. bkdR, sigL, yplP 결실에 대한 이중, 삼중 돌연변이를 만들어 LB agar에서 $20^{\circ}C$로 키워 저온생장을 조사한 결과, bkdR 결실이 포함되지 않은 어떤 이중, 삼중 결실들에서는 저온에 민감한 생장을 보이지 않았다. 온도 민감성 특성을 보다 잘 알아보기 위하여 $37^{\circ}C$에서 $OD_{600}=0.4$까지 키워 $15^{\circ}C$로 온도를 내리는 저온충격 조건에서 생장하는 실험을 진행하였다. 이 실험에서 오직bkdR 결실 돌연변이만이 현저히 낮은 생장을 보였으며 추가적인 des 결실은 저온 민감성을 증가시킨다. bkdR은 branched-chain fatty acid을 합성하는 전구물질인 isoleucine, valine, leucine 아미노산을 생산하는 bkd operon을 활성화한다. bkdR 결실 돌연변이의 저온생장에서 이들 아미노산의 저온생장에 미치는 영향을 조사한 결과 isoleucine은 bkdR 결실에 대한 저온 민감성을 회복시켜주나 valine은 저온 민감성을 회복시켜 주지 못하는 결과를 보였다. isoleucine은 분해되어 anteiso-branched 지방산 합성의 전구물질로 만들어지는 반면에, valine은 iso-branched 지방산 합성의 전구물질로 만들어진다. 따라서 저온생장에서 branched-chain fatty acid 중 anteiso-branched 지방산이 중요한 역할을 하고 있음을 알 수 있었다.

Keywords

References

  1. Aguilar, P.S., Cronan, J.E. Jr, and de Mendoza, D. 1998. A Bacillus subtilis gene Induced by cold shock encodes a membrane phospholipid desaturase. J. Bacteriol. 180, 2194-2200.
  2. Beckering, C.L., Steil, L., Weber, M.H.W., Volker, U., and Marahiel, M.A. 2002. Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J. Bacteriol. 184, 6395-6402. https://doi.org/10.1128/JB.184.22.6395-6402.2002
  3. Broeze, R.J., Solomon, C.J., and Pope, D.H. 1978. Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J. Bacteriol. 134, 861-874.
  4. Buck, M., Gallegos, M.T., Studholme, D.J., Guo, Y., and Gralla, J.D. 2000. The bacterial enhancer-dependent ${\varsigma}^{54}({\varsigma}^N)$ transcription factor. J. Bacteriol. 182, 4129-4136.
  5. Cavicchioli, R., Thomas, T., and Curmi, P.M. 2000. Cold stress response in Archaea. Extremophiles 4, 321-331. https://doi.org/10.1007/s007920070001
  6. Debarbouille, M., Gardan, R., Arnaud, M., and Rapoport, G. 1999. Role of BkdR, a transcriptional activator of the SigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J. Bacteriol. 181, 2059-2066.
  7. Debarbouille, M., Martin-Verstraete, I., Kunst, F., and Rapoport, G. 1991. The Bacillus subtilis sigL gene encode an equivalent of sigma 54 from Gram-negative bacteria. Proc. Natl. Acad. Sci. USA 88, 9092-9096. https://doi.org/10.1073/pnas.88.20.9092
  8. Friedman, H., Lu, P., and Rich, A. 1971. Temperature control of initiation of protein synthesis in Escherichia coli. J. Mol. Biol. 61, 105-121. https://doi.org/10.1016/0022-2836(71)90209-9
  9. Hebraud, M. and Potier, P. 1999. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J. Mol. Microbiol. Biotechnol. 1, 211-219.
  10. Hunger, K., Beckering, C.L., and Marahiel, M.A. 2004. Genetic evidence for the temperature-sensing ability of the membrane domain of the Bacillus subtilis histidine kinase. FEMS Microbiol. Lett. 230, 41-46.
  11. Kaan, T., Homuth, G., Mader, U., Bandow, J., and Schweder, T. 2002. Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 148, 3441-3455.
  12. Los, D.A. and Murata, N. 1999. Responses to cold shock in cyanobacteria. J. Mol. Microbiol. Biotechnol. 1, 221-230.
  13. Suutari, M. and Laakso, S. 1992. Unsaturated and branched-chain fatty-acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Biochim. Biophys. Acta 1126, 119-124. https://doi.org/10.1016/0005-2760(92)90281-Y
  14. Svobodova, J., Julak, J., Pilar, J., and Svoboda, P. 1988. Membrane fluidity in Bacillus subtilis. Validity of homeoviscous adaptation. Folia Microbiol. 33, 170-177. https://doi.org/10.1007/BF02925901
  15. Weber, M.H.W., Klein, W., Muller, L., Niess, U.M., and Marahiel, M.A. 2001. Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol. Microbiol. 39, 1321-1329. https://doi.org/10.1111/j.1365-2958.2001.02322.x
  16. Weber, M.H.W. and Marahiel, M.A. 2003. Bacterial cold shock responses. Sci. Prog. 86, 69-75.
  17. Wiegeshoff, F., Beckering, C.L., Debarbouille, M., and Marahiel, M.A. 2006. Sigma L is important for cold shock adaptation of Bacillus subtilis. J. Bacteriol. 188, 3130-3133. https://doi.org/10.1128/JB.188.8.3130-3133.2006
  18. Wiegeshoff, F. and Marahiel, M.A. 2007. Characterization of a mutation in the acetolactate synthase of Bacillus subtilis that causes a cold-sensitive phenotype. FEMS Microbiol. Lett. 272, 30-34. https://doi.org/10.1111/j.1574-6968.2007.00739.x
  19. Yamanaka, K. 1999. Cold shock response in Escherichia coli. J. Mol. Microbiol. Biotechnol. 1, 193-202.