DOI QR코드

DOI QR Code

Characterization of an Antarctic alkaline protease, a cold-active enzyme for laundry detergents

세탁세제 첨가용 효소 개발을 위한 남극 해양세균 유래 저온성 단백질분해효소의 특성 연구

  • Park, Ha Ju (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Han, Se Jong (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Yim, Joung Han (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Kim, Dockyu (Division of Polar Life Sciences, Korea Polar Research Institute)
  • 박하주 (극지연구소 극지생명과학연구부) ;
  • 한세종 (극지연구소 극지생명과학연구부) ;
  • 임정한 (극지연구소 극지생명과학연구부) ;
  • 김덕규 (극지연구소 극지생명과학연구부)
  • Received : 2017.10.17
  • Accepted : 2017.12.20
  • Published : 2018.03.31

Abstract

A cold-active and alkaline serine protease (Pro21717) was partially purified from the Antarctic marine bacterium Pseudoalteromonas arctica PAMC 21717. On a zymogram gel containing skim milk, Pro21717 produced two distinct clear-zones of approximately 37 kDa (low intensity) and 74 kDa (high intensity). These were found to have identical N-terminal sequences, suggesting they arose from an identical precursor and that the 37 kDa protease might homodimerize to the more active 74 kDa form of the protein. Pro21717 displayed proteolytic activity at $0-40^{\circ}C$ (optimal temperature of $40^{\circ}C$) and maintained this activity at pH 5.0-10.0 (optimal pH of 9.0). Notably, relative activities of 30% and 45% were observed at $0^{\circ}C$ and $10^{\circ}C$, respectively, in comparison to the 100% activity observed at $40^{\circ}C$, and this enzyme showed a broad substrate range against synthetic peptides with a preference for proline in the cleavage reaction. Pro21717 activity was enhanced by $Cu^{2+}$ and remained stable in the presence of detergent surfactants (linear alkylbenzene sulfonate and sodium dodecyl sulfate) and other chemical components ($Na_2SO_4$ and metal ions, such as $Ba^{2+}$, $Mg^{2+}$, $Ca^{2+}$, $Zn^{2+}$, $Fe^{2+}$, $K^+$, and $Na^{2+}$), which are often included in commercial detergent formulations. These data indicate that the psychrophilic Pro21717 has properties comparable to the well-characterized mesophilic subtilisin Carlsberg, which is commercially produced by Novozymes as the trademark Alcalase. Thus it has the potential to be used as a new additive enzyme in laundry detergents that must work well in cold tap water below $15^{\circ}C$.

남극 해양세균 Pseudoalteromonas arctica PAMC 21717로부터 저온활성 alkaline protease (Pro21717)를 부분정제하였다. Pro21717 효소 추출액은 skim milk를 포함하는 zymogram gel 상에서 약 37 kDa (낮은 활성)과 74 kDa (높은 활성) 위치에서 두 개의 뚜렷한 투명밴드(clear zone)를 형성하였다. 단백질 분해활성을 나타내는 두 개의 효소단백질은 동일한 N-말단 아미노산 서열을 가지고 있었으며, 하나의 유전자에서 발현된 미성숙 단백질(precursor)이 37 kDa 크기의 단백질분해효소로 성숙화과정을 거친 후 74 kDa 크기로 이량체화됨으로써 좀 더 높은 활성을 가지는 것으로 판단된다. Pro21717은 $0-40^{\circ}C$ (최고활성 온도 $40^{\circ}C$) 온도 범위에서 단백질분해활성을 나타내었고 pH 5.0-10.0 (최적 pH 9.0) 범위에서 효소활성을 유지하였다. 주목할만한 특성으로써, Pro21717은 $40^{\circ}C$에서의 최고 효소활성(100%) 대비, $0^{\circ}C$$10^{\circ}C$에서 각각 30%와 45%의 높은 저온활성을 나타내었다. 또한 다양한 합성 펩타이드류에 대해 분해활성을 나타내는 Pro21717은 $Cu^{2+}$에 의해 활성이 증가하였으며, 시판용 세탁세제(commercial detergent formulation)에 포함되어 있는 다양한 종류의 계면활성제, 화학성분, 금속이온에 의해 활성이 감소되지 않았다. 전반적으로 저온활성 Pro21717은 글로벌 상업용효소 생산회사 Novozymes이 시판하고 있는 중온성 효소 Subtilisin Carlsberg (trademark Alcalase)에 버금가는 유용한 효소학적 특성이 있는 동시에 상대적으로 더 높은 저온활성을 보여주고 있다. 위의 실험결과들은, Pro21717은 $15^{\circ}C$ 이하의 차가운 수돗물에서도 세척력을 유지하는 새로운 세탁세제 효소첨가제로서의 개발 가능성을 보여주고 있다.

Keywords

References

  1. Chen, X.L., Xie, B.B., Lu, J.T., He, H.L., and Zhang, Y. 2007. A novel type of subtilase from the psychrotolerant bacterium Pseudoalteromonas sp. SM9913: catalytic and structural properties of deseasin MCP-01. Microbiology 153, 2116-2125. https://doi.org/10.1099/mic.0.2007/006056-0
  2. Cupp-Enyard, C. 2008. Sigma's non-specific protease activity assay - casein as a substrate. J. Vis. Exp. 19, e899.
  3. Giri, S.S., Sukumaran, V., Sen, S.S., Oviya, M., Banu, B.N., and Jena, P.K. 2011. Purification and partial characterization of a detergent and oxidizing agent stable alkaline protease from a newly isolated Bacillus subtilis VSG-4 of tropical soil. J. Microbiol. 49, 455-461. https://doi.org/10.1007/s12275-011-0427-4
  4. Gupta, R., Beg, Q.K., and Lorenz, P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59, 15-32. https://doi.org/10.1007/s00253-002-0975-y
  5. Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., and Nasri, M. 2009. Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresour. Technol. 100, 3366-3373. https://doi.org/10.1016/j.biortech.2009.01.061
  6. Huston, A.L., Methe, B., and Deming, J.W. 2004. Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70, 3321-3328. https://doi.org/10.1128/AEM.70.6.3321-3328.2004
  7. Joo, H. and Chang, C. 2006. Production of an oxidant and SDS-stable alkaline protease from an alkaophilic Bacillus clausii I-52 by submerged fermentation: feasibility as a laundry detergent additive. Enzyme Microbiol. Technol. 38, 176-183. https://doi.org/10.1016/j.enzmictec.2005.05.008
  8. Joshi, S. and Satyanarayana, T. 2013. Biotechnology of cold-active proteases. Biology (Basel) 2, 755-783.
  9. Kim, D., Park, H.J., Lee, Y.M., Hong, S.G., Lee, H.K., and Yim, J.H. 2010. Screening for cold-active protease-producing bacteria from the culture collection of polar microorganisms and characterization of proteolytic activities. Korean J. Microbiol. 46, 73-79.
  10. Kirk, O., Borchert, T.V., and Fuglsang, C.C. 2002. Industrial enzyme applications. Curr. Opin. Biotechnol. 13, 345-351. https://doi.org/10.1016/S0958-1669(02)00328-2
  11. Kuddus, M. and Ramteke, P.W. 2012. Recent developments in production and biotechnological applications of cold-active microbial proteases. Crit. Rev. Microbiol. 38, 330-338. https://doi.org/10.3109/1040841X.2012.678477
  12. Kumara, C.G. and Takagi, H. 1999. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol. Adv. 17, 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
  13. Larsen, A.N., Moe, E., Helland, R., Gjellesvik, D.R., and Willassen, N.P. 2006. Characterization of a recombinantly expressed proteinase K-like enzyme from a psychrotrophic Serratia sp. FEBS J. 273, 47-60. https://doi.org/10.1111/j.1742-4658.2005.05044.x
  14. Mageswari, A., Subramanian, P., Chandrasekaran, S., Karthikeyan, S., and Gothandam, K.M. 2017. Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp. Food Chem. 217, 18-27. https://doi.org/10.1016/j.foodchem.2016.08.064
  15. Niyonzima, F.N. and More, S. 2015. Detergent-compatible proteases: microbial production, properties, and stain removal analysis. Prep. Biochem. Biotechnol. 45, 233-258. https://doi.org/10.1080/10826068.2014.907183
  16. Ottmann, C., Rose, R., Huttenlocher, F., Cedzich, A., Hauske, P., Kaiser, M., Huber, R., and Schaller, A. 2009. Structural basis for $Ca^{2+}$-independence and activation by homodimerization of tomato subtilase 3. Proc. Natl. Acad. Sci. USA 106, 17223-17228. https://doi.org/10.1073/pnas.0907587106
  17. Overall, C.M. and Blobel, C.P. 2007. In search of partners: linking extracellular proteases to substrates. Nat. Rev. Mol. Cell Biol. 8, 245-257.
  18. Peek, K., Veitch, D.P., Prescott, M., Daniel, R.M., MacIver, B., and Bergquist, P.L. 1993. Some characteristics of a proteinase from a thermophilic Bacillus sp. expressed in Escherichia coli: comparison with the native enzyme and its processing in E. coli and in vitro. Appl. Environ. Microbiol. 59, 1168-1175.
  19. Rao, M.B., Tanksale, A.M., Ghatage, M.S., and Deshpande, V.V. 1998. Molecular and biotechnological aspects of microbial proteases. Micobiol. Mol. Biol. Rev. 62, 597-635.
  20. Rawlings, N.D., Morton, F.R., and Barrett, A.J. 2006. MEROPS: the peptidase database. Nucleic Acids Res. 34, D270-D272. https://doi.org/10.1093/nar/gkj089
  21. Saeki, K., Ozaki, K., Kobayashi, T., and Ito, S. 2007. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J. Biosci. Bioeng. 103, 501-508.
  22. Santiago, M., Ramirez-Sarmiento, C.A., Zamora, R.A., and Parra, L.P. 2016. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front. Microbiol. 7, 1408.
  23. Sellami-Kamoun, A., Haddar, A., Ali, N.E., Ghorbel-Frikha, B., Kanoun, S., and Nasri, M. 2008. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 163, 299-306.
  24. Vojcic, L., Pitzler, C., Korfer, G., Jakob, F., Martinez, R., Maurer, K.H., and Schwaneberg, U. 2015. Advances in protease engineering for laundry detergents. N. Biotechnol. 32, 629-634.
  25. Wang, Q.F., Miao, J.L., Hou, Y.H., Ding, Y., Wang, G.D., and Li, G.Y. 2005. Purification and characterization of an extracellular cold-active serine protease from the psychrophilic bacterium Colwellia sp. NJ341. Biotechnol. Lett. 27, 1195-1198. https://doi.org/10.1007/s10529-005-0016-x
  26. Yan, B.Q., Chen, X.L., Hou, X.Y., He, H., Zhou, B.C., and Zhang, Y.Z. 2009. Molecular analysis of the gene encoding a cold-adapted halophilic subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913: cloning, expression, characterization and function analysis of the C-terminal PPC domains. Extremophiles 13, 725-733. https://doi.org/10.1007/s00792-009-0263-1

Cited by

  1. Current prospective in using cold-active enzymes as eco-friendly detergent additive vol.104, pp.7, 2018, https://doi.org/10.1007/s00253-020-10429-x
  2. Exploring the utility of nanoprotease as environmentally friendly benign laundry detergent fabric cleaner vol.334, pp.None, 2022, https://doi.org/10.1016/j.jclepro.2021.130243