DOI QR코드

DOI QR Code

Antinociceptive and anti-inflammatory effects of ginsenoside Rf in a rat model of incisional pain

  • Kim, Min Kyoung (Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine) ;
  • Kang, Hyun (Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine) ;
  • Baek, Chong Wha (Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine) ;
  • Jung, Yong Hun (Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine) ;
  • Woo, Young Cheol (Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine) ;
  • Choi, Geun Joo (Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine) ;
  • Shin, Hwa Yong (Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine) ;
  • Kim, Kyung Soo (Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine)
  • Received : 2016.07.11
  • Accepted : 2017.02.27
  • Published : 2018.04.15

Abstract

Background: Ginseng saponin has long been used as a traditional Asian medicine and is known to be effective in treating various kinds of pain. Ginsenoside Rf is one of the biologically active saponins found in ginseng. We evaluated ginsenoside Rf's antinociceptive and anti-inflammatory effects, and its mechanism of action on adrenergic and serotonergic receptors, in an incisional pain model. Methods: Mechanical hyperalgesia was induced via plantar incision in rats followed by intraperitoneal administration of increasing doses of ginsenoside Rf (vehicle, 0.5 mg/kg, 1 mg/kg, 1.5 mg/kg, and 2 mg/kg). The antinociceptive effect was also compared in a Positive Control Group that received a ketorolac (30 mg/kg) injection, and the $Na{\ddot{i}}ve$ Group, which did not undergo incision. To evaluate the mechanism of action, rats were treated with prazosin (1 mg/kg), yohimbine (2 mg/kg), or ketanserin (1 mg/kg) prior to receiving ginsenoside Rf (1.5 mg/kg). The mechanical withdrawal threshold was measured using von Frey filaments at various time points before and after ginsenoside Rf administration. To evaluate the anti-inflammatory effect, serum interleukin $(IL)-1{\beta}$, IL-6, and tumor necrotizing $factor-{\alpha}$ levels were measured. Results: Ginsenoside Rf increased the mechanical withdrawal threshold significantly, with a curvilinear dose-response curve peaking at 1.5 mg/kg. $IL-1{\beta}$, IL-6, and tumor necrotizing $factor-{\alpha}$ levels significantly decreased after ginsenoside Rf treatment. Ginsenoside Rf's antinociceptive effect was reduced by yohimbine, but potentiated by prazosin and ketanserin. Conclusion: Intraperitoneal ginsenoside Rf has an antinociceptive effect peaking at a dose of 1.5 mg/kg. Anti-inflammatory effects were also detected.

Keywords

References

  1. Liu CX, Xiao PG. Recent advances on ginseng research in China. J Ethnopharmacol 1992;36:27-38.
  2. Kaku T, Miyata T, Uruno T, Sako I, Kinoshita A. Chemico-pharmacological studies on saponins of Panax ginseng C. A. Meyer. II. Pharmacological part. Arzneimittelforschung 1975;25:539-47.
  3. Kim WJ, Kang H, Choi GJ, Shin HY, Baek CW, Jung YH, Woo YC, Kim JY, Yon JH. Antihyperalgesic effects of ginseng total saponins in a rat model of incisional pain. J Surg Res 2014;187:169-75.
  4. Mogil JS, Shin YH, McCleskey EW, Kim SC, Nah SY. Ginsenoside Rf, a trace component of ginseng root, produces antinociception in mice. Brain Res 1998;792:218-28. https://doi.org/10.1016/S0006-8993(98)00133-4
  5. Nemmani KV, Ramarao P. Ginsenoside Rf potentiates U-50,488H-induced analgesia and inhibits tolerance to its analgesia in mice. Life Sci 2003;72:759-68. https://doi.org/10.1016/S0024-3205(02)02333-0
  6. Shin DJ, Yoon MH, Lee HG, Kim WM, Park BY, Kim YO, Huang LJ, Cui JH. The effect of treatment with intrathecal ginsenosides in a rat model of postoperative pain. Korean J Pain 2007;20:100-5. https://doi.org/10.3344/kjp.2007.20.2.100
  7. Kim WJ, Kang H, Kim JE, Choi GJ, Shin HY, Baek CW, Jung YH, Woo YC, Kim SH, Lee JH. Effect of intraperitoneal administered ginseng total saponins on hyperalgesia induced by repeated intramuscular injection of acidic saline in rats. J Med Food 2014;17:657-62.
  8. Jin Ju N, Seok C, Yoon Hee K, Seok Chang K, Ki Yeul N, Jong Keun K, Seung Yeol N. Effect of spinally administered ginseng total saponin on capsaicininduced pain and excitatory amino acid-induced nocicpetive responses. J Ginseng Res 1999;23:38-43.
  9. Kim IJ, Park CH, Lee SH, Yoon MH. The role of spinal adrenergic receptors on the antinociception of ginsenosides in a rat postoperative pain model. Korean J Anesthesiol 2013;65:55-60. https://doi.org/10.4097/kjae.2013.65.1.55
  10. Kim SY, Yoon MH, Lee HG, Kim WM, Lee JD, Kim YO, Huang LJ, Cui JH. The role of adrenergic and cholinergic receptors on the antinociception of Korean Red Ginseng in the spinal cord of rats. Korean J Pain 2008;21:27-32. https://doi.org/10.3344/kjp.2008.21.1.27
  11. Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 1997;54:1-8. https://doi.org/10.1016/S0006-2952(97)00193-7
  12. Nah SY, Park HJ, McCleskey EW. A trace component of ginseng that inhibits Ca2+ channels through a pertussis toxin-sensitive G protein. Proc Natl Acad Sci U S A 1995;92. 8,739-8,743. https://doi.org/10.1073/pnas.92.19.8739
  13. Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. Pain 1996;64:493-501. https://doi.org/10.1016/0304-3959(95)01441-1
  14. Woolf CJ, Chong MS. Preemptive analgesiadtreating postoperative pain by preventing the establishment of central sensitization. Anesth Analg 1993;77:362-79. https://doi.org/10.1213/00000539-199377020-00026
  15. Bianchi M, Martucci C, Ferrario P, Franchi S, Sacerdote P. Increased tumor necrosis factor-alpha and prostaglandin E2 concentrations in the cerebrospinal fluid of rats with inflammatory hyperalgesia: the effects of analgesic drugs. Anesth Analg 2007;104:949-54. https://doi.org/10.1213/01.ane.0000258060.89380.27
  16. Covey WC, Ignatowski TA, Renauld AE, Knight PR, Nader ND, Spengler RN. Expression of neuron-associated tumor necrosis factor alpha in the brain is increased during persistent pain. Reg Anesth Pain Med 2002;27:357-66.
  17. Beilin B, Shavit Y, Trabekin E, Mordashev B, Mayburd E, Zeidel A, Bessler H. The effects of postoperative pain management on immune response to surgery. Anesth Analg 2003;97:822-7.
  18. Cui JG, Holmin S, Mathiesen T, Meyerson BA, Linderoth B. Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain 2000;88:239-48. https://doi.org/10.1016/S0304-3959(00)00331-6
  19. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother 2010;1:94-9. https://doi.org/10.4103/0976-500X.72351
  20. Kim TK, Kim YS, Yoon JR, Han IS, Kim JS, Lee CW. The effect of an intraperitoneal injection of ketamine and ketorolac on mechanical allodynia in rats with spinal nerve ligation. Korean J Anesthesiol 2004;46:719-23. https://doi.org/10.4097/kjae.2004.46.6.719
  21. Micov A, Tomic M, Popovic B, Stepanovic-Petrovic R. The antihyperalgesic effect of levetiracetam in an inflammatory model of pain in rats: mechanism of action. Br J Pharmacol 2010;161:384-92. https://doi.org/10.1111/j.1476-5381.2010.00877.x
  22. Pinardi G, Sierralta F, Miranda HF. Adrenergic mechanisms in antinociceptive effects of non steroidal antiinflammatory drugs in acute thermal nociception in mice. Inflamm Res 2002;51:219-22. https://doi.org/10.1007/PL00000296
  23. Reboucas EC, Segato EN, Kishi R, Freitas RL, Savoldi M, Morato S, Coimbra NC. Effect of the blockade of mu1-opioid and 5HT2A-serotonergic/alpha1-noradrenergic receptors on sweet-substance-induced analgesia. Psychopharmacology (Berl) 2005;179:349-55. https://doi.org/10.1007/s00213-004-2045-x
  24. Yokogawa F, Kiuchi Y, Ishikawa Y, Otsuka N, Masuda Y, Oguchi K, Hosoyamada A. An investigation of monoamine receptors involved in antinociceptive effects of antidepressants. Anesth Analg 2002;95:163-8.
  25. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-98. https://doi.org/10.1016/j.jgr.2014.12.005
  26. Shin YH, Jung OM, Nah JJ, Nam KY, Kim CY, Nah SY. Ginsenosides that produce differential antinociception in mice. Gen Pharmacol 1999;32:653-9. https://doi.org/10.1016/S0306-3623(98)00239-0
  27. Choi S-S, Han E-J, Han K-J, Lee H-K, Suh H-W. Antinociceptive effects of ginsenosides injected intracerebroventricularly or intrathecally in Substance PInduced pain model. Planta Med 2003;69. 1,001-4. https://doi.org/10.1055/s-2003-45145
  28. Kim DH, Moon YS, Lee TH, Jung JS, Suh HW, Song DK. The inhibitory effect of ginseng saponins on the stress-induced plasma interleukin-6 level in mice. Neurosci Lett 2003;353:13-6. https://doi.org/10.1016/j.neulet.2003.08.070
  29. Paul S, Shin HS, Kang SC. Inhibition of inflammations and macrophage activation by ginsenoside-Re isolated from Korean ginseng (Panax ginseng C.A. Meyer). Food Chem Toxicol 2012;50. 1,354-61. https://doi.org/10.1016/j.fct.2012.02.035
  30. Li L, Sheng YX, Zhang JL, Wang SS, Guo DA. High-performance liquid chromatographic assay for the active saponins from Panax notoginseng in rat tissues. Biomed Chromatogr 2006;20:327-35. https://doi.org/10.1002/bmc.567
  31. Wilder-Smith OH. Preemptive analgesia and surgical pain. Prog Brain Res 2000;129:505-24.
  32. Boschen MJ. Pregabalin: doseeresponse relationship in generalized anxiety disorder. Pharmacopsychiatry 2012;45:51-6. https://doi.org/10.1055/s-0031-1291176
  33. Cowan A, Lewis JW, Macfarlane IR. Agonist and antagonist properties of buprenorphine, a new antinociceptive agent. Br J Pharmacol 1977;60:537-45. https://doi.org/10.1111/j.1476-5381.1977.tb07532.x
  34. Palao DJ, Arauxo A, Brunet M, Bernardo M, Haro JM, Ferrer J, Gonzalez-Monclus E. Haloperidol: therapeutic window in schizophrenia. J Clin Psychopharmacol 1994;14:303-10.
  35. Bryan D, Walker KB, Ferguson M, Thorpe R. Cytokine gene expression in a murine wound healing model. Cytokine 2005;31:429-38. https://doi.org/10.1016/j.cyto.2005.06.015
  36. Salo M. Effects of anaesthesia and surgery on the immune response. Acta Anaesthesiol Scand 1992;36:201-20.
  37. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 2001;410:471-5. https://doi.org/10.1038/35068566
  38. Perretti M, Ahluwalia A, Flower RJ, Manzini S. Endogenous tachykinins play a role in IL-1-induced neutrophil accumulation: involvement of NK-1 receptors. Immunology 1993;80:73-7.
  39. Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Yang DC. Suppression of MAPKs/NFkappaB activation induces intestinal antiinflammatory action of ginsenoside Rf in HT-29 and RAW264.7 cells. Immunol Invest 2016;45:439-49.
  40. Li P, Lv B, Jiang X, Wang T, Ma X, Chang N, Wang X, Gao X. Identification of NFkappaB inhibitors following Shenfu injection and bioactivity-integrated UPLC/Q-TOF-MS and screening for related antiinflammatory targets in vitro and in silico. J Ethnopharmacol 2016;194:658-67. https://doi.org/10.1016/j.jep.2016.10.052
  41. Seo YJ, Kwon MS, Choi HW, Jang JE, Lee JK, Sun Y, Jung JS, Park SH, Suh HW. Intracerebroventricular ginsenosides are antinociceptive in proinflammatory cytokine-induced pain behaviors of mice. Arch Pharm Res 2008;31:364-9. https://doi.org/10.1007/s12272-001-1165-x
  42. Kawasaki Y, Kumamoto E, Furue H, Yoshimura M. Alpha 2 adrenoceptormediated presynaptic inhibition of primary afferent glutamatergic transmission in rat substantia gelatinosa neurons. Anesthesiology 2003;98:682-9. https://doi.org/10.1097/00000542-200303000-00016
  43. Pogatzki EM, Gebhart GF, Brennan TJ. Characterization of Adelta- and C-fibers innervating the plantar rat hindpaw 1 d after an incision. J Neurophysiol 2002;87:721-31. https://doi.org/10.1152/jn.00208.2001
  44. Vandermeulen EP, Brennan TJ. Alterations in ascending dorsal horn neurons by a surgical incision in the rat foot. Anesthesiology 2000;93. 1,294-1,302; discussion 6A. https://doi.org/10.1097/00000542-200011000-00024
  45. Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol 2006;80:53-83. https://doi.org/10.1016/j.pneurobio.2006.08.001
  46. Yoon MH, Huang LJ, Choi JI, Lee HG, Kim WM, Kim CM. Antinociceptive effect of intrathecal ginsenosides through alpha-2 adrenoceptors in the formalin test of rats. Br J Anaesth 2011;106:371-9. https://doi.org/10.1093/bja/aeq367
  47. Millan MJ. Descending control of pain. Prog Neurobiol 2002;66:355-474. https://doi.org/10.1016/S0301-0082(02)00009-6
  48. Huang J, Cai Q, Chen Y, Hong Y. Treatment with ketanserin produces opioidmediated hypoalgesia in the late phase of carrageenan-induced inflammatory hyperalgesia in rats. Brain Res 2009;1303:39-47. https://doi.org/10.1016/j.brainres.2009.09.072

Cited by

  1. Comprehensive Profiling and Quantification of Ginsenosides in the Root, Stem, Leaf, and Berry of Panax ginseng by UPLC-QTOF/MS vol.22, pp.12, 2017, https://doi.org/10.3390/molecules22122147
  2. Study on the Structure of Ginseng Glycopeptides with Anti-Inflammatory and Analgesic Activity vol.23, pp.6, 2018, https://doi.org/10.3390/molecules23061325
  3. A discrimination study of Asia ginseng and America ginseng by a comparison of ginsenosides, oligosaccharides and amino acids using a UPLC-MS method vol.41, pp.13, 2018, https://doi.org/10.1080/10826076.2018.1506933
  4. Antiepileptic and anti-neuroinflammatory effects of red ginseng in an intrahippocampal kainic acid model of temporal lobe epilepsy demonstrated by electroencephalography vol.35, pp.2, 2018, https://doi.org/10.12701/yujm.2018.35.2.192
  5. Retracted Article: Ginsenoside Rf alleviates dysmenorrhea and inflammation through the BDNF-TrkB-CREB pathway in a rat model of endometriosis vol.10, pp.1, 2018, https://doi.org/10.1039/c8fo01839a
  6. Ginsenoside Rf relieves mechanical hypersensitivity, depression‐like behavior, and inflammatory reactions in chronic constriction injury rats vol.33, pp.4, 2018, https://doi.org/10.1002/ptr.6303
  7. Phenolic Compounds and Ginsenosides in Ginseng Shoots and Their Antioxidant and Anti-Inflammatory Capacities in LPS-Induced RAW264.7 Mouse Macrophages vol.20, pp.12, 2018, https://doi.org/10.3390/ijms20122951
  8. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng vol.10, pp.3, 2020, https://doi.org/10.3390/biom10030444
  9. Antidepressant effects of ginsenoside Rf on behavioral change in the glial degeneration model of depression by reversing glial loss vol.44, pp.4, 2020, https://doi.org/10.1016/j.jgr.2019.08.005
  10. Mechanism of Incisional Pain: Novel Finding on Long Noncoding RNA XIST/miR-340-5p/RAB1A Axis vol.13, pp.None, 2018, https://doi.org/10.1177/17590914211049056
  11. Effects of Ginsenoside Rf on dextran sodium sulfate-induced colitis in mice vol.32, pp.1, 2018, https://doi.org/10.1080/09540105.2021.1950128
  12. Comparison of ginsenoside (Rg1, Rb1) content and radical-scavenging activities of wild-simulated ginseng extract with respect to the solvent vol.28, pp.2, 2018, https://doi.org/10.11002/kjfp.2021.28.2.261
  13. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition vol.7, pp.11, 2018, https://doi.org/10.1016/j.heliyon.2021.e08354
  14. Effects of ginsenoside Rb1 on second-degree burn wound healing and FGF-2/PDGF-BB/PDGFR-β pathway modulation vol.16, pp.1, 2018, https://doi.org/10.1186/s13020-021-00455-w