땃두릅 나무 줄기의 성분

Chemical Constituents of Oplopanax elatus Stem

  • 권용수 (강원대학교 약학대학) ;
  • 유지혜 (강원대학교 한방바이오연구소) ;
  • 유남호 (강원대학교 농업생명과학대학) ;
  • 김명조 (강원대학교 농업생명과학대학) ;
  • 김현표 (강원대학교 약학대학) ;
  • 양희정 (강원대학교 약학대학) ;
  • 전완주 (강원대학교 의학전문대학원)
  • Kwon, Yongsoo (College of Pharmacy, Kangwon National University) ;
  • Yoo, Ji Hye (Bioherb Research Institute, Kangwon National University) ;
  • Yoo, Nam Ho (College of Agriculture and Life Science, Kangwon National University) ;
  • Kim, Myong Jo (College of Agriculture and Life Science, Kangwon National University) ;
  • Kim, Hyun Pyo (College of Pharmacy, Kangwon National University) ;
  • Yang, Heejung (College of Pharmacy, Kangwon National University) ;
  • Chun, Wanjoo (School of Medicine, Kangwon National University)
  • 투고 : 2018.03.06
  • 심사 : 2018.03.27
  • 발행 : 2018.03.31

초록

Five compounds were isolated from the water extract of Oplopanax elatus stem. On the basis of spectral data, the structure of isolated compounds were identified as scoparone (1), uracil (2), protocatechuic acid (3), syringin (4), and adenosine (5). Among the these compounds, scoparone (1), uracil (2), protocatechuic acid (3), and adenosine (5) were isolated for the first time from this plant.

키워드

참고문헌

  1. 이우철 (1996) 원색 한국기준식물 도감, 251, 아카데미서적, 서울.
  2. 國家中醫藥管理局 <中華本草> 編委會 (1999) 中華本草 5, 804-805, 上海科學技術出版社, 上海.
  3. Shikov, A. N, Pozharitskaya, O. N., Makarov, V. G., Yang, W. Z. and Guo, A. D. (2014) Oplopanax elatus (Nakai) Nakai : chemistry, traditional use and pharmacology, Chin. J. Nat. Med. 12: 721-729.
  4. Wang, H. J., Yan, M. M., Wu, X., Shao, S. and Zhao, D. Q. (2009) Study on the chemical constituents of the stocks of Oplopanax elatus Nakai, Lishizhen Med. Mater. Med. 20: 678-679.
  5. Yang, C. M., Kwon, H. C., Kim, Y. J., Lee, K. R. and Yang, H. O. (2010) Oploxynes A and B, polyacetylenes from the stems of Oplopanax elatus, J. Nat. Prod. 73: 801-805.
  6. Steck, W. and Mazurek, M. (1972) Identification of natural coumaris by NMR spectroscopy. Lloydia 35: 418-439.
  7. Kim, M. A., Kim, M. J., Chun, W. and Kwon, Y. (2015) Chemical constituents and their acetylcholinesterase inhibitory activity of underground parts of Clematis heracleifolia. Kor. J. Pharmacogn. 46: 6-11.
  8. Liu, X. and Zho, X. (2017) Scoparone attenuates hepatic stellate cell activation through inhibiting TGF-${\beta}$/Smad signaling pathway. Biomed. Pharmacother. 93: 57-61. https://doi.org/10.1016/j.biopha.2017.06.006
  9. Cho, D. Y., Ko, H. M., Kim, J., Kim, B. W., Yun, Y. S., Park, J. I., Ganesan, P., Lee, J. T. and Choi, D. K. (2016) Scoparone inhibits LPS-simulated inflammatory response by suppressing IRF3 and ERK in BV-2 microglial cells. Molecules 21: E1718. https://doi.org/10.3390/molecules21121718
  10. Kim, J. K., Kim, J. Y., Kim, H. J., Park, K. G., Harris, R. A., Cho, W. J., Lee, J. T. and Lee, I. K. (2013) Scoparone exerts anti-tumor activity against DU145 prostate cancer cells via inhibition of STAT3 activity. PLoS One 8: e80391.
  11. Jung, H. A., Park, J. J., Islam, M. N., Jin, S. E., Min, B. S., Lee, J. H., Sohn, H. S and, Choi, J. S. (2012) Inhibitory activity of coumarins from Artemisia capillaris against advanced glycation endproduct formation. Arch. Pharm. Res. 35: 1021-1035. https://doi.org/10.1007/s12272-012-0610-0
  12. Murakami, T., Tanaka, N., Satake, T., Saiki, T. and Chen, C. M. (1985) Chemical and chemotoxonomical studies on Filices. LVII. Chemical studies on the constituents of Colysis hemionitidea (Wall) Presl. and Microsorium fortunei (Moore) Ching. Yakugaku Zasshi 105: 655-658. https://doi.org/10.1248/yakushi1947.105.7_655
  13. Woo, K. W., Sim, M. O., Park, J. E., Kim, M. S., Suh, W. S., Cho, H. W., Kwon, H. C., Park, J. C. and Lee, K. R. (2016) Chemical constituents from the stems of Lagerstroemia indica and their anti-oxidant effect. Kor. J. Pharmacogn. 47: 204-210.
  14. Yu, H., Yang, G., Sato, M., Yamaguchi, T., Nakano, T. and Xi Y. (2017) Antioxidant activities of aqueous extract from Stevia rebaudiana stem waste to inhibit fish oil oxidation and identification of its phenolic compounds. Food Chem. 232: 379-386. https://doi.org/10.1016/j.foodchem.2017.04.004
  15. Park, J., Lee, B., Choi, H., Kim, W., Kim, H. J. and Cheong, H. (2016) Antithrombosis activity of protocatechuic and shikimic acids from functional plant Pinus densiflora Sieb. et Zucc needles. J. Nat. Med. 70: 492-501. https://doi.org/10.1007/s11418-015-0956-y
  16. Dai, X. Q., Cai, W. T., Wu. X., Chen, Y. and Han F. M. (2017) Protocatechuic acid inhibits hepatitis B virus replication by activating ERK1/2 pathway and down-regulating HNF4${\alpha}$ and HNF1 ${\alpha}$ in vitro. Life Sci. 180: 68-74. https://doi.org/10.1016/j.lfs.2017.05.015
  17. Kim, T. W., Min, K. M., Yu, S. J., Lee, M. J., Jung, H. M., Cho, W. J., Kim. M. J., Chun, W. and Kwon, Y. (2015) Chemical constituents of the twigs of Paulownia coreana. Kor. J. Pharmacogn. 46: 99-104.
  18. Lall, N., Kishore, N., Binneman, B., Twilley, D., van de Venter, M., du Plessis-Stoman, D., Boukes, G. and Hussein, A. (2015) Cytotoxicity of syringin and 4-methoxycinnamyl alcohol isolated from Foeniculum vulgare on selected human cell lines. Nat. Prod. Res. 29: 1752-1756. https://doi.org/10.1080/14786419.2014.999058
  19. Gong, X., Zhang, L., Jiang, R., Wang, C. D., Yin, X. R. and Wan, J. Y. (2014) Hepatoprotective effects of syringin on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice. J. Appl. Toxicol. 34: 265-271. https://doi.org/10.1002/jat.2876
  20. Sharma, U., Bala, M., Kumar, N., Singh, B., Munshi, R. K. and Bhalerao, S. (2012) Immunomodulatory active compounds from Tinospora cordifolia. J. Ethnopharmacol. 141: 918-926. https://doi.org/10.1016/j.jep.2012.03.027
  21. Yang, E. J., Kim, S. I., Ku, H. Y., Lee, D. S., Lee, J. W., Kim, Y. S., Seong, Y. H. and Song, K. S. (2010) Syringin from stem bark of Fraxinus rhynchophylla protects Abeta(25-35)-induced toxicity in neuronal cells. Arch. Pharm. Res. 33: 531-538. https://doi.org/10.1007/s12272-010-0406-z
  22. Dey, P. M. and Harborne, J. B (1991) Methods in plant biochemistry. In Rogers, L. J. (ed.) Vol. 5. Amino acids, Proteins and Nucleiic acids, 53-90, Academic Press, New York.
  23. Son, K. H., Do, J. C. and Kang, S. S. (1991) Isolation of Adenosine from the Rhizomes of Polygonatum sibiricum. Arch. Pharm. Res. 14: 193-194. https://doi.org/10.1007/BF02892028
  24. Zhang, D. Y., Shao W. F., Liu, Z. H., Huang, Y. W. and Shi, Z. P. (2010) Chemical constituents of Pu-erh tea and its inhibition effect on ${\alpha}$-amylase in vitro. Agric. Sci. Technol. 11: 130-132.
  25. Huang, L., Li, Q., Chen, Y., Wang, X. and Zhou, X. (2009) Determination and analysis of cordyceptin and adenosine in the products of Cordyceps spp. Afr. J. Microbiol. Res. 3: 957-961.
  26. Qian, Z., Zhen, D., Li, W., Lin W., Sun, M. Yang, F. and Xiang, L. (2016) Adenosine transformation pathway during water extraction of Chinese Cordyceps. World Chinese Medicine. 11: 758-762.