달팽이 추출물이 골 성장에 미치는 in Vitro 및 in Vivo 영향

Effect of Snail Extract on Bone Growth in Vitro and in Vivo

  • 투고 : 2018.01.24
  • 심사 : 2018.03.19
  • 발행 : 2018.03.31

초록

This study investigated the effect of snail extract on the growth parameters of old female rats (27 weeks). Rats were administered orally with snail extract at a dose of 100 mg/kg, 200 mg/kg, chondroitin sulfate 10 mg/kg and 0.9% saline (control) for 8 weeks. Bone mineral density (BMD) and serum concentrations of insulin-like growth factor 1 (IGF-1) and insulinlike growth factor-binding protein 3 (IGFBP-3) were significantly higher in rats exposed to snail extract for 8 weeks. MG-63 cells (human osteoblast-like cells) were treated with snail extract for 48 h. Their differentiation and proliferation was investigated with Western blot and morphological changes observed via immunofluorescence staining of ${\beta}-catenin$. Treatment with snail extract significantly increased the levels of growth factors including ${\beta}-catenin$ and IGF-1. The snail extract affected osteoblast formation. Morphological changes in MG-63 cells were observed via immunofluorescence staining. Treatment with snail extract increased the expression of ${\beta}-catenin$ in MG-63 cells. Results suggest that the treatment of MG-63 cells with snail extract increased the longitudinal growth and growth factor levels. Snail extract may be pharmacologically effective in osteogenic differentiation in vitro and represents a potential therapeutic agent for bone formation.

키워드

참고문헌

  1. Kim, Y. M., Kim, J. H. and Jo, D. S. (2015) Gender difference in osteoporosis prevalence, awareness and treatment: Based on the Korea national health and nutrition examination survey 2008-2011. J. Korean Acad. Nurs. 45: 293-305. https://doi.org/10.4040/jkan.2015.45.2.293
  2. NIH osteoporosis and related bone disease national resource center (2015) Osteoporosis: Peak Bone Mass in Women. https://www.bones.nih.gov/sites/bones/files/bone_mass.pdf
  3. 대한골다공증학회 (2015) 골다공증 치료지침.
  4. Leftwic, A. W. (1977) A dictionary of zoology, 450. Constable and company limited, London.
  5. 권오길, 박갑만, 이준상 (1993) 원색한국패류도감, 177. 아카데미서적, 서울.
  6. 이경삼 (1992) 식용달팽이 양식과 요리법, 179. 오성출판사.
  7. Zapsalis, C. and Beck, R. A. (1985) Food chemistry and nutritional biochemistry, 390, John Wiley and Sons press, New York.
  8. Krueger, R. C., Hennig, A. K. and Schwartz, N. B. (1992) Two immunologically and developmentally distinct chondroitin sulfate proteoglycans in embryonic chick brain. J. Biol. chem. 267: 12149-12161.
  9. Sugahara, K., Ohi, Y., Harada, T., de Waard, P. and Vliegenthart, J. F. (1992) Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. J. Biol. Chem. 267: 6027-6035.
  10. Sohn, K. H. and Kim, T. H. (2017) Effect of snail (Fruticiola sieboldiana) extract on reactive oxygen species (ROS) in old female rats. Kor. J. Pharmacogn. 48: 289-297.
  11. Ha, H., Kwak, H. B., Lee, S. W., Jin, H. M., Kim, H. H. and Lee, Z. H. (2004) Reactive oxygen species mediate RANK signaling in osteoclasts. Esp. Cell Res. 301: 119-127. https://doi.org/10.1016/j.yexcr.2004.07.035
  12. Reddy, S. V. (2004) Regulatory mechanisms operative in osteoclases. Crit. Rev. Eukaryot Gene. Espr. 14: 255-270. https://doi.org/10.1615/CritRevEukaryotGeneExpr.v14.i4.20
  13. Z. Laron (2001) Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol. Pathol. 54: 311-316. https://doi.org/10.1136/mp.54.5.311
  14. Park, J. Y. Choi, M. Y., Lee, S. H., Choi, Y. H. and Park, Y. K. (2011) The association between bone mineral density, bone turnover markers, and nutrient intake in pre and postmenopausal women. Korean J. Nutr. 44: 29-40. https://doi.org/10.4163/kjn.2011.44.1.29
  15. Misawa, I., Toshiaki, Y., Kiyoshi, M., Gen, W., Kazuyoshi, T. and Fumio, C. (2012) Maternal age and reproductive function in female Sprague-Dawley rats. J. Toxicol. Sci. 37: 631-638.
  16. Suzuki, H., Hayakawa, M., Kobayashi, K., Takiguchi, H. and Abiko, Y. (1997) $H_2O_2$-derived free radicals treated fibronectin substratum reduced the bone nodule formation of rat calvarial osteoblast. Mech. Aging Dev. 98: 113-125. https://doi.org/10.1016/S0047-6374(97)00077-8
  17. Hall, T. J., Schaeublin, M., Jeker, H., Fuller, K. and Chambers, T. J. (1995) The role of reactive oxygen intermediates in osteoclastic bone resorption. Biochem. Biophys. Res. Commun. 207: 280-287.
  18. Gerard, J. T. and Sandra, R. G. (2003) Principles of anaomy & physiology (10th edition), 174. Wiley, New York.
  19. Scriver, C. R., Beaudet, A. L., Sly, W. S. and valle, D. (1995) The metabolic and molecular bases of inherited disease. Vol II (7th edition), 3023-3044. McGraw-Hill, New York.
  20. Caddigan, K. M. and Nusse, R. (1997) Wnt signaling: a common theme in animal development. Genes. Dev. 11: 3286-3305. https://doi.org/10.1101/gad.11.24.3286
  21. Johnson, M. L. and Kamel, M. A. (2007) The Wnt signaling pathway and bone metabolism. Curr. Opin. Rheumatol. 19: 376-382.
  22. Wodarz, A. and Nusse, R. (1998) Mechanisms of Wnt signaling in development. Annu. Rev. Cell. Dev. Biol. 14: 59-88. https://doi.org/10.1146/annurev.cellbio.14.1.59
  23. Tong, M., Ziplow, J., Chen, W. C., Nguyen, Q. G., Kim, C. and de la Monte, S. M. (2014) Motor function deficits following chronic prenatal ethanol exposure are linked to impairments in insulin/IGF, notch and Wnt signaling in the cerebellum. J. Diabetes Metab. 4: 238-259.
  24. Chung, D. J. and Chung, M. Y. (2007) Bone forming effect of PTH through Wnt/${\beta}$-catenin signaling system. Endocrinol. Metab. 22: 407-410.
  25. Thoiverey, C. and Caverzasio, J. (2015) Focus on the p38 MAPK signaling pathway in bone development and maintenance. BoneKEy Reports. doi:10.1038/bonekey2015.80.