DOI QR코드

DOI QR Code

Effect of Various Sizing Agents on the Properties of Nylon6/Carbon Fiber Composites Prepared by Reactive Process

다양한 사이징제가 반응중합에 의해 제조된 나일론 6/탄소섬유 복합체의 물성에 미치는 영향

  • Park, Ha-Neul (Composites Processing Division, Korea Institute of Carbon Convergence Technology) ;
  • Lee, Hak Sung (Composites Processing Division, Korea Institute of Carbon Convergence Technology) ;
  • Huh, Mongyoung (Composites Processing Division, Korea Institute of Carbon Convergence Technology)
  • Received : 2018.08.06
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

In order to improve the interfacial bonding force and reaction polymerization degree of the carbon fiber reinforced nylon 6 composite material, the surface of the existing epoxy-sizing carbon fiber was desized to remove the epoxy and treated with urethane, nylon and phenoxy sizing agent, was observed. The interfacial bond strength of the resized carbon fiber was confirmed by IFSS (Interfacial Shear Strength) and the fracture surface was observed by scanning electron microscope. The results showed that the interfacial bonding strength of the carbon fiber treated with nylon and phenoxy sizing agents was higher than that of urethane - based sizing. It has been found that the urethane - type resizing carbon fiber has lower interfacial bonding strength than the conventional epoxy - sizing carbon fiber. This result shows that the interfacial bonding between carbon fiber and nylon 6 is improved by removing low activity and smoothness of existing carbon fiber.

탄소섬유 강화 PA6 복합재료의 탄소섬유-메트릭스간 계면결합력과 반응중합도 향상을 위해서 기존 탄소섬유의 에폭시 사이징제를 디사이징처리하여 에폭시를 제거한 후 우레탄계, 나일론계, 페녹시계 사이징제로 재처리해주었으며, 리사이징처리된탄소섬유의표면을관찰하였다. 리사이징처리된탄소섬유의계면결합력은 IFSS(Interfacial shear strength)를 통해서 확인하였으며, 계면 결합 강도 측정 후 파단면은 주사전자현미경을 통해서 관찰하였다. 나일론계와 페녹시계 사이징제로 처리된 탄소섬유가 우레탄계 사이징에 비해 계면 결합력이 상승한 것을 확인하였다. 우레탄계 리사이징 처리된 탄소섬유는 기존 에폭시 사이징 탄소섬유보다 계면 결합력이 감소한 것으로 확인되었다. 이 결과는 기존 탄소섬유의 저활성과 평활성을 제거하여 탄소섬유와 나일론6 사이의 계면 결합력이 향상된 것으로 판단된다.

Keywords

BHJRB9_2018_v31n6_299_f0001.png 이미지

Fig. 1. Process of treating carbon fiber to sizing agents

BHJRB9_2018_v31n6_299_f0002.png 이미지

Fig. 2. The Surface of resized carbon fiber observed through a scanning electron microscope (SEM). (Left : Urethane resizing carbon fiber/Right : Phenoxy resizing carbon fiber)

BHJRB9_2018_v31n6_299_f0003.png 이미지

Fig. 3. Fabrication of single fiber IFSS(Interfacial shear strength)specimen

BHJRB9_2018_v31n6_299_f0004.png 이미지

Fig. 4. Single fiber IFSS(Interfacial shear strength) test (ASTM C1239-07)

BHJRB9_2018_v31n6_299_f0005.png 이미지

Fig. 5. Interfacial shear strength(IFSS) graph of carbon fiber treated sizing agents

BHJRB9_2018_v31n6_299_f0006.png 이미지

Fig. 6. Scanning electromicroscope(SEM) image of phenoxy resizing carbon fiber attached droplet after interfacial shear strength (IFSS)

BHJRB9_2018_v31n6_299_f0007.png 이미지

Fig. 7. Schematic diagram of the reaction polymerization process using a resized fabric

BHJRB9_2018_v31n6_299_f0008.png 이미지

Fig. 8. Measurement method of polymerization conversion of nylon6 reaction polymerization specimen

BHJRB9_2018_v31n6_299_f0009.png 이미지

Fig. 9. Flexural strength graph of reactive polymerized specimens using resizing carbon fiber

Table 1. Data table of Interfacial shear strength(IFSS)

BHJRB9_2018_v31n6_299_t0001.png 이미지

Table 2. Polymerization conversion of nylon 6 composites using resizing carbon fiber

BHJRB9_2018_v31n6_299_t0002.png 이미지

Table 3. Flexural strength data of reaction polymerization specimens using resizing carbon fibers

BHJRB9_2018_v31n6_299_t0003.png 이미지

References

  1. Schwartz, M.M., Composite Materials Handbook, 2nd ed., McGraw-Hill, New-York, 1992.
  2. Smith, W.S., Engineered Materials Handbook, vol. 1, ASM International, Ohio, 1987.
  3. Donnet, J.B., and Bansal, R.C., Carbon Fibers, 2nd ed., pp. 95-121, Marcel Dekker, New-York, 1990.
  4. Morgan, P., Carbon Fibers and Their Composites. CRC Press, 2005.
  5. Bauer, R.S., Epoxy Resin Chemistry ACS Advances in Chemistry Series No. 114, American Chemical Society, Washington DC, 1979.
  6. Park, S.J., in "Interfacial Forces and Fields: Theory and Applications", ed. By J.P. Hsu, chap. 9, Marcel Dekker, New-York, 1999.
  7. Fried, J.R., Polymer Science and Technology, pp. 276-287, Prentice Hall, 1995.
  8. Mallick, P.K., Fiber-Reinforced Composites; Materials, Manufacturing, and Design, pp. 23-29, Marcel Dekker, New York and Basel, 1988.
  9. Chuang, S.L., Chu, N.J., and Whang, W.T., "Effect of Polyamic Acids on Interracial Shear Strength in Carbon Fiber/aro- Matic Thermoplastics", Journal of Applied Polymer Science, Vol. 41, 1990, pp. 373. https://doi.org/10.1002/app.1990.070410129
  10. Subramanian, R.V., et al., "Electrodeposition of a Polymer Interphase in Carbon-Fiber Composites", Polymer Composites, Vol. 7, 1986, pp. 201. https://doi.org/10.1002/pc.750070403
  11. Johannson, O.K., Stark, F.O., Vogel, G.E., and Flesichmann, R.M., "Evidence for Chemical Bond Formation at Silane Coupling Agent Interfaces", Journal of Composite Materials, Vol. 1, 1967, pp. 278. https://doi.org/10.1177/002199836700100304
  12. Koenig, J.L., and Shih, P.T.K., "Raman Studies of the Glass Fiber-Silane-Resin", Journal of Colloid and Interface Science, Vol. 36, 1971, pp. 247-253. https://doi.org/10.1016/0021-9797(71)90169-X
  13. Chung, D.W., Oh, Y.T., and Park, Y.T., "Effect of the Amount of Catalyst and Chain-Initiator on the Anionic Polymerization of e-Caprolactam," Polymer Korea, Vol. 25, No. 1, 2001, pp. 1-5.
  14. Huh, M.Y., Jung, M.H., Park Y.S., Kim, B.J., Kang, M.S., Holden, P.J., and Yun, S.I., "Effect of Carbon Nanotube Functionalization on the Structure and Properties of Poly(3-hydroxybutyrate)/MWCNTs Biocomposites", Macromlecular Research, Vol. 22, No. 7, 2014, pp. 765-722.