DOI QR코드

DOI QR Code

Microbial community analysis of an eco-friendly recirculating aquaculture system for olive flounder (Paralichthys olivaceus) using complex microbial probiotics

복합미생물 프로바이오틱을 이용한 환경친화적 넙치 순환여과양식시스템에서의 미생물군집 분석

  • Rhee, Chaeyoung (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Kim, Haham (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Emmanuel, S. Aalfin (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Kim, Hong-Gi (Bayo, Inc.) ;
  • Won, Seonghun (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Bae, Jinho (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Bai, Sungchul C. (Department of Marine Bio-materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Koh, Sung-Cheol (Department of Environmental Engineering, Korea Maritime and Ocean University)
  • 이채영 (한국해양대학교 환경공학과) ;
  • 김하함 (국립부경대학교 해양바이오신소재학과/사료영양연구소) ;
  • 알핀이마뉴엘 (한국해양대학교 환경공학과) ;
  • 김홍기 ((주)바요) ;
  • 원성훈 (국립부경대학교 해양바이오신소재학과/사료영양연구소) ;
  • 배진호 (국립부경대학교 해양바이오신소재학과/사료영양연구소) ;
  • 배승철 (국립부경대학교 해양바이오신소재학과/사료영양연구소) ;
  • 고성철 (한국해양대학교 환경공학과)
  • Received : 2018.11.16
  • Accepted : 2018.12.19
  • Published : 2018.12.31

Abstract

This study was conducted to evaluate effects of dietary microbial probiotics on the growth and disease resistance of olive flounder (Paralichthys olivaceus) in a recirculating aquaculture system (RAS), and the effects of the probiotic bioaugmentation on the microbial community structure and water quality. For the analysis, 80 juvenile fish (average weight, $25.7{\pm}7.6g$; average length, $15.2{\pm}1.7cm$) were fed a basal diet containing a commercial microbial product CES-AQ1 (CES; $1{\times}10^9\;CFU/kg$ diet) in an RAS for 8 weeks. Weight gain, the specific growth rate, feed efficiency, and protein efficiency ratio of the fish fed the CES diet in the RAS were 1.5~2.5 times higher than those of fish fed the basal diet alone, or the basal diet containing oxytetracycline (OTC), yeast plus bacterium, or Bacillus subtilis in a still water system. There was no significant difference in the pathogen challenge test between fish fed the OTC diet and fish fed the CES diet in the RAS, suggesting the CES-AQ1 probiotic used in the RAS as a potential replacement for antibiotics. The RAS biofilter maintained the highest microbial diversity and appeared to harbor microbial communities with ammonium oxidation, denitrification, and fish pathogen suppression functions. Ammonia, which is hazardous to fish, was significantly decreased to < 0.5 mg/L in 19 days, indicating the effectiveness of probiotic supplementation to maintain good water quality in RAS. These results suggest that the intestinal microbial communities of fish are stabilized by a probiotic-containing diet (CES) and that bioaugmentation with probiotics may be an eco-friendly and economical supplement for aquaculture of olive flounder, promoting both good water quality and fish health in an RAS.

본 연구는 순환여과양식시스템(RAS)에 있어서 복합프로바이오틱스의 적용이 넙치의 성장과 병저항성에 미치는 영향과 이 프로바이오틱스를 RAS에 생물증강처리 시 미생물군집 구조 및 수질에 미치는 영향을 평가하고자 실시하였다. RAS 내에서 80미의 넙치치어($25.7{\pm}7.6g$; $15.2{\pm}1.7cm$)에 프로바이오틱스 CES-AQ1를 첨가하여 사료를 제조하여(CES 사료; $1{\times}10^9\;CFU/kg$) 8주일 동안 급이하였다. 이 경우 넙치의 증체율, 비성장속도, 사료효율, 및 단백질 전환효율은 비유수식 양식시스템에 있어서 CON, PI 및 OTC 사료를 처리한 경우에 비해 1.5~2.5배 정도 높게 나타났다. 1주일간 병원균 저항성 시험에 있어서 비유수식에서 항생제함유 사료(OTC)를 급이한 경우와 RAS에서 CES 사료를 처리한 경우간에는 별 차이가 나타나지 않았다. 따라서 이 CES 프로바이오틱스를 RAS에서 넙치를 양식하는데 있어서 항생제 대용으로 활용할 수 있을 것으로 판단되었다. RAS의 생물여과막에서는 가장 높은 미생물다양성이 나타났으며 암모니아의 산화 및 탈질능을 가진 미생물이 관찰되었고, 병원미생물의 성장억제도 관찰되었다. 더구나 RAS 운전 19일 경과 시 암모니아가 0.5 mg/L이하의 농도로 감소하여 양호한 RAS 수질의 유지에 있어서 프로바이오틱스 처리가 효과가 있음이 밝혀졌다. 사료에 프로바이오틱스(CES-AQ1)를 첨가하여 넙치 장내 미생물이 안정화되고 또한 이 프로바이오틱스를 RAS 양식수에도 처리하여 RAS를 운전할 경우 건강한 넙치의 양식과 양호한 수질을 유지할 수 있어서 경제적이고 환경친화적인 넙치양식이 가능할 것으로 판단되었다.

Keywords

MSMHBQ_2018_v54n4_369_f0001.png 이미지

Fig. 1. Schematic of the recirculating aquaculture system (RAS) used in this study.

MSMHBQ_2018_v54n4_369_f0002.png 이미지

Fig. 2. Chemical analysis of water quality in terms of chemical oxygen demand (COD), total nitrogen (T-N), ammonia (NH3-N), Nitrate (NO3- -N), and total phosphorus (T-P) in the RAS.

MSMHBQ_2018_v54n4_369_f0003.png 이미지

Fig. 3. Cumulative survival of juvenile olive flounder after challenge with Edwardsiella tarda for 7 days.

MSMHBQ_2018_v54n4_369_f0004.png 이미지

Fig. 4. Microbial community structures in the gut of the fish, water, and biofilter in the RAS at the (A) phylum and (B) species levels.

MSMHBQ_2018_v54n4_369_f0005.png 이미지

Fig. 5. Unifrac UPGMA clustering analysis of the microbial community structures in the guts of fish fed various experiment diets (OTC, Pure isolates, and CES-AQ1) and the guts of fish, as well as the water and biofilter, in the RAS (RAS).

Table 1. Growth performance of juvenile olive flounder fed experimental diets and grown in a recirculating aquaculture system (RAS) or still water tanks for 8 weeks

MSMHBQ_2018_v54n4_369_t0001.png 이미지

Table 2. Diversity indices of the microbial communities in samples from the water and biofilter of the RAS and the guts of fish grown in the RAS based on pyrosequencing analysisa

MSMHBQ_2018_v54n4_369_t0002.png 이미지

References

  1. Aly SM, Abdel-Galil AY, Abdel-Aziz GA, and Mohamed MF. 2008. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol. 25, 128-136. https://doi.org/10.1016/j.fsi.2008.03.013
  2. Awad E and Awaad A. 2017. Role of medicinal plants on growth performance and immune status in fish. Fish Shellfish Immunol. 67, 40-54. https://doi.org/10.1016/j.fsi.2017.05.034
  3. Balcazar JL, Blas ID, Ruiz-Zarzuela I, Cunningham D, Vendrell D, and Muzquiz JL. 2006. The role of probiotics in aquaculture. Vet. Microbiol. 114, 173-186. https://doi.org/10.1016/j.vetmic.2006.01.009
  4. Banerjee G and Ray AK. 2017. The advancement of probiotics research and its application in fish farming industries. Res. Vet. Sci. 115, 66-77. https://doi.org/10.1016/j.rvsc.2017.01.016
  5. Buric M, Blahovec J, and Kouril J. 2016. Feasibility of open recirculating system in temperate climate - a case study. Aquac. Res. 47, 1156-1167. https://doi.org/10.1111/are.12572
  6. Cerda-Cuellar M and Blanch AR. 2004. Determination of Vibrio scophthalmi and its phenotypic diversity in turbot larvae. Environ. Microbiol. 6, 209-217. https://doi.org/10.1046/j.1462-2920.2004.00555.x
  7. Cerda-Cuellar M, Rossello-Mora RA, Lalucat J, Jofre J, and Blanch A. 1997. Vibrio scophthalmi sp. nov., a new species from turbot (Scophthalmus maximus). Int. J. Syst. Bacteriol. 47, 58-61. https://doi.org/10.1099/00207713-47-1-58
  8. Chambel J, Severiano V, Baptista T, Mendes S, and Pedrosa R. 2015. Effect of stocking density and different diets on growth of Percula Clownfish, Amphiprion percula (Lacepede, 1802). Springerplus 4, 183. https://doi.org/10.1186/s40064-015-0967-x
  9. Cho SH, Jeon GH, Kim HS, Kim DS, and Kim C. 2013. Effects of dietary Scutellaria baicalensis extract on growth, feed utilization and challenge test of olive flounder (Paralichthys olivaceus). Asian-australas. J. Anim. Sci. 26, 90-96. https://doi.org/10.5713/ajas.2012.12147
  10. FAO. 2016. Contributing to food security and nutrition for all, p. 200. In The state of world fisheries and aquaculture.
  11. Fernandes PM, Pedersen LF, and Pedersen PB. 2017. Influence of fixed and moving bed biofilters on micro particle dynamics in a recirculating aquaculture system. Aquac. Eng. 78, 32-41. https://doi.org/10.1016/j.aquaeng.2016.09.002
  12. Garcia R and Muller R. 2014. The family Nannocystaceae, pp. 213-229. In Rosenberg E, DeLong EF, Lory S, Stackebrandt, E, and Thompson F. (eds.), The prokaryotes. Springer Berlin Heidelberg, Berlin Heidelberg, Germany.
  13. Gatesoupe FJ. 1999. The use of probiotics in aquaculture. Aquaculture 180, 147-165. https://doi.org/10.1016/S0044-8486(99)00187-8
  14. Goncalves AT, Valenzuela-Munoz V, and Gallardo-Escarate C. 2017. Intestinal transcriptome modulation by functional diets in rainbow trout: A high-throughput sequencing appraisal to highlight GALT immunomodulation. Fish Shellfish Immunol. 64, 325-338. https://doi.org/10.1016/j.fsi.2017.03.022
  15. Gregory SP, Dyson PJ, Fletcher D, Gatland P, and Shields RJ. 2012. Nitrogen removal and changes to microbial communities in model flood/drain and submerged biofilters treating aquaculture wastewater. Aquac. Eng. 50, 37-45. https://doi.org/10.1016/j.aquaeng.2012.03.006
  16. Jang HM, Kim YB, Choi S, Lee Y, Shin SG, Unno T, and Kim YM. 2018. Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. Environ. Pollut. 233, 1049-1057. https://doi.org/10.1016/j.envpol.2017.10.006
  17. Keller R, Pedroso MZ, Ritchmann R, and Silva RM. 1998. Occurrence of virulence-associated properties in Enterobacter cloacae. Infect. Immun. 66, 645-649.
  18. Kim KW, Moniruzzaman M, Kim KD, Han HS, Yun H, Lee S, and Bai SC. 2016. Effects of dietary protein levels on growth performance and body composition of juvenile parrot fish, Oplegnathus fasciatus. Int. Aquat. Res. 8, 239-245. https://doi.org/10.1007/s40071-016-0139-9
  19. KOSTAT (Statistics KOREA). 2018. Agriculture & fishery products.
  20. Kwon SR, Lee EH, Nam YK, Kim SK, and Kim KH. 2007. Efficacy of oral immunization with Edwardsiella tarda ghosts against edwardsiellosis in olive flounder (Paralichthys olivaceus). Aquaculture 269, 84-88. https://doi.org/10.1016/j.aquaculture.2007.04.018
  21. Lee S, Katya K, Park Y, Won S, Seong M, Hamidoghli A, and Bai SC. 2017. Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish Shellfish Immunol. 61, 201-210. https://doi.org/10.1016/j.fsi.2016.12.035
  22. Lin HL, Shiu YL, Chiu CS, Huang SL, and Liu CH. 2017. Screening probiotic candidates for a mixture of probiotics to enhance the growth performance, immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against Aeromonas hydrophila. Fish Shellfish Immunol. 60, 474-482. https://doi.org/10.1016/j.fsi.2016.11.026
  23. McBride MJ. 2014. The family Flavobacteriaceae, pp. 643-676. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, and Thompson F. (eds.), The prokaryotes: other major lineages of bacteria and the archaea. Springer Berlin Heidelberg, Berlin Heidelberg, Germany.
  24. Mezzatesta ML, Gona F, and Stefani S. 2012. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 7, 887-902. https://doi.org/10.2217/fmb.12.61
  25. Midilli A, Kucuk H, and Dincer I. 2012. Environmental and sustainability aspects of a recirculating aquaculture system. Environ. Prog. Sustain. Energy 31, 604-611. https://doi.org/10.1002/ep.10580
  26. Mulder A, van de Graaf AA, Robertson LA, and Kuenen JG. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177-183. https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
  27. Park Y, Moniruzzaman M, Lee S, Hong J, Won S, Lee JM, Yun H, Kim KW, Ko D, and Bai SC. 2016. Comparison of the effects of dietary single and multi-probiotics on growth, non-specific immune responses and disease resistance in starry flounder, Platichthys stellatus. Fish Shellfish Immunol. 59, 351-357. https://doi.org/10.1016/j.fsi.2016.11.006
  28. Pungrasmi W, Playchoom C, and Powtongsook S. 2013. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system. J. Environ. Sci. 25, 1557-1564. https://doi.org/10.1016/S1001-0742(12)60248-4
  29. Qiao G, Park SI, and Xu DH. 2012. Clinical, hematological, and biochemical alterations in olive flounder Paralichthys olivaceus following experimental infection by Vibrio scophthalmi. Fish. Aquat. Sci. 15, 233-239.
  30. Ramirez C and Romero J. 2017. Fine flounder (Paralichthys adspersus) microbiome showed important differences between wild and reared specimens. Front. Microbiol. 8, 271.
  31. Rud I, Kolarevic J, Holan AB, Berget I, Calabrese S, and Terjesen BF. 2017. Deep-sequencing of the bacterial microbiota in commercialscale recirculating and semi-closed aquaculture systems for Atlantic salmon post-smolt production. Aquac. Eng. 78, 50-62. https://doi.org/10.1016/j.aquaeng.2016.10.003
  32. Rurangwa E and Verdegem MCJ. 2015. Microorganisms in recirculating aquaculture systems and their management. Rev. Aquacult. 7, 117-130. https://doi.org/10.1111/raq.12057
  33. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann, M., Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. https://doi.org/10.1128/AEM.01541-09
  34. Sekar VT, Santiago TC, Vijayan KK, Alavandi, SV, Raj VS, Rajan JJ, Sanjuktha M, and Kalaimani N. 2008. Involvement of Enterobacter cloacae in the mortality of the fish, Mugil cephalus. Lett. Appl. Microbiol. 46, 667-672. https://doi.org/10.1111/j.1472-765X.2008.02365.x
  35. Srisapoome P and Areechon N. 2017. Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): Laboratory and on-farm trials. Fish Shellfish Immunol. 67, 199-210. https://doi.org/10.1016/j.fsi.2017.06.018
  36. Tacon AGJ and Metian M. 2015. Feed Matters: Satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 23, 1-10. https://doi.org/10.1080/23308249.2014.987209
  37. Tsukuda S, Christianson L, Kolb A, Saito K, and Summerfelt S. 2015. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters. Aquac. Eng. 64, 49-59. https://doi.org/10.1016/j.aquaeng.2014.10.010
  38. Yamashita MM, Pereira SA, Cardoso L, de Araujo AP, Oda CE, Schmidt EC, Bouzon ZL, Martins ML, and Mourino JLP. 2017. Probiotic dietary supplementation in Nile tilapia as prophylaxis against streptococcosis. Aquac. Nutr. 23, 1235-1243. https://doi.org/10.1111/anu.12498
  39. Zhao Y, Zhang W, Xu W, Mai K, Zhang Y, and Liufu Z. 2012. Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 32, 750-755. https://doi.org/10.1016/j.fsi.2012.01.027
  40. Zhou Q, Li K, Jun X, and Bo L. 2009. Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresour. Technol. 100, 3780-3786. https://doi.org/10.1016/j.biortech.2008.12.037

Cited by

  1. Maximum levels of cross‐contamination for 24 antimicrobial active substances in non‐target feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline vol.19, pp.10, 2018, https://doi.org/10.2903/j.efsa.2021.6864
  2. Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish vol.120, pp.None, 2018, https://doi.org/10.1016/j.fsi.2021.12.037