DOI QR코드

DOI QR Code

Fabrication of Reverse Osmosis Membrane with Enhanced Boron Rejection Using Surface Modification

표면개질을 이용하여 붕소 제거율이 향상된 역삼투막의 제조

  • Lee, Deok-Ro (Advanced Green Chemical Materials Division Center for Membrane, Korea Research Institute of Chemical Technolgy) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kwon, Sei (Advanced Green Chemical Materials Division Center for Membrane, Korea Research Institute of Chemical Technolgy) ;
  • Lee, Hye-Jin (Advanced Green Chemical Materials Division Center for Membrane, Korea Research Institute of Chemical Technolgy) ;
  • Kim, In-Chul (Advanced Green Chemical Materials Division Center for Membrane, Korea Research Institute of Chemical Technolgy)
  • 이덕로 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 김종학 (연세대학교 화공생명공학과) ;
  • 권세이 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 이혜진 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 김인철 (한국화학연구원 그린화학소재연구본부 분리막연구센터)
  • Received : 2018.03.06
  • Accepted : 2018.04.25
  • Published : 2018.04.30

Abstract

With the rapid increase in seawater desalination, the importance of boron rejection is rising. This study was conducted to investigate the effect of hydrophilic compounds on surface modification to maximize water flux and increase boron rejection. First, polyamide active layer was fabricated by interfacial polymerization of polysulfone ultrafiltration membrane with M-phenylenediamine (MPD) and trimesoyl chloride (TMC) to obtain Control polyamide membrane. Next, D-gluconic acid (DGCA) and D-gluconic acid sodium salt (DGCA-Na) were synthesized with glutaraldehyde (GA) and hydrochloric acid (HCl) by modifying the surface of Control polyamide membrane. XPS analysis was carried out for the surface analysis of the synthesized membrane, and it was confirmed that the reaction of surface with DGCA and DGCA-Na compounds was performed. Also, FE-SEM and AFM analysis were performed for morphology measurement, and polyamide active layer formation and surface roughness were confirmed. In the case of water flux, the membrane fabricated by the surface modification had a value of 10 GFD or less. However, the boron rejection of the membranes synthesized with DGCA and DGCA-Na compounds were 94.38% and 94.64%, respectively, which were 12.03 %p and 12.29 %p larger than the Control polyamide membrane, respectively.

해수담수화의 빠른 증가와 함께 붕소 제거에 대한 중요성이 상승하고 있다. 본 연구는 표면개질 시 친수성 화합물을 이용하여 수투과량을 최대한 막고 붕소 제거율을 높이기 위한 연구를 진행하였다. 첫째로, Control polyamide 역삼투막을 얻기 위해 M-phenylenediamine (MPD)와 trimesoyl chloride (TMC)를 Polysulfone 한외여과막에 계면중합을 시켜 polyamide 활성층을 제조하였다. 다음으로, Control polyamide 역삼투막에 표면개질을 진행시켜 D-gluconic acid (DGCA)와 D-gluconic acid sodium salt (DGCA-Na)를 glutaraldehyde (GA)와 hydrochloric acid (HCl)을 이용하여 합성시켰다. 합성된 역삼투막의 표면 분석을 위해 XPS 분석을 진행하였으며, DGCA 및 DGCA-Na 화합물과의 반응이 되었음을 확인하였다. 또한, morphology 측정을 위해 FE-SEM과 AFM 분석을 진행하였으며, polyamide 활성층 형성 및 표면 거칠기를 확인할 수 있었다. 수투과량의 경우, 표면개질을 진행한 역삼투막은 10 GFD 수준이거나 그 이하의 값을 가졌다. 하지만, DGCA 및 DGCA-Na 화합물과 표면개질을 진행한 역삼투막의 붕소 제거율은 94.38, 94.64%로, Control polyamide 역삼투막보다 각각 12.03, 12.29 %p만큼 큰 값을 가지는 것을 확인할 수 있었다.

Keywords

References

  1. I. G. Wenten and Khoiruddin, "Reverse osmosis applications: Prospect and challenges", Desalination, 391, 112 (2016). https://doi.org/10.1016/j.desal.2015.12.011
  2. Q. Zhang, C. Zhang, J. Xu, Y. Nie, S. Li, and, S. Zhang, "Effect of poly(vinyl alcohol) coating process conditions on the properties and performance of polyamide reverse osmosis membranes", Desalination, 379, 42 (2016). https://doi.org/10.1016/j.desal.2015.10.012
  3. M. D. Vincenzo, M. Barboiu, A. Tiraferri, and Y. M. Legrand, "Poly-functionalized thin-film composite membranes with improved transport properties and boron removal in reverse osmosis", J. Membr. Sci., 540, 71 (2017). https://doi.org/10.1016/j.memsci.2017.06.034
  4. K. L. Tu, L. D. Nghiem, and A. R. Chivas, "Coupling effects of feed solution pH and ionic strength on the rejection of boron by NF/RO membranes", Chem. Eng. J., 168, 700 (2011). https://doi.org/10.1016/j.cej.2011.01.101
  5. K. L. Tu, L. D. Nghiem, and A. R. Chivas, "Boron removal by reverse osmosis membranes in seawater desalination", Sep. Purif. Technol., 75, 87 (2010). https://doi.org/10.1016/j.seppur.2010.07.021
  6. Y. Cengeloglu, G. Arslan, A. Tor, I. Kocak, and N. Dursun, "Removal of boron from water by using reverse osmosis", Sep. Purif. Technol., 64, 141 (2008). https://doi.org/10.1016/j.seppur.2008.09.006
  7. P. Dydo, M. Turek, and A. Milewski, "Removal of boric acid, monoborate and boron complexes with polyols by reverse osmosis membranes", Desalination, 334, 39 (2014). https://doi.org/10.1016/j.desal.2013.12.001
  8. J. Hu, Y. Pu, M. Ueda, X. Zhang, and L. Wang, "Charge-aggregate induced (CAI) reverse osmosis membrane for seawater desalinatino and boron removal", J. Membr. Sci., 520, 1 (2016). https://doi.org/10.1016/j.memsci.2016.07.053
  9. V. Vatanpour, M. Safarpour, A. Khataee, H. Zarrabi, M. E. Yekavalangi, and M. Kavian, "A thin film nanocomposite reverse osmosis membrane containing amine-functionalized carbon nanotubes", Sep. Purif. Technol., 184, 135 (2017). https://doi.org/10.1016/j.seppur.2017.04.038
  10. A. Saraf, K. Johnson, and M. L. Lind, "Poly(vinyl) alcohol coating of the support layer of reverse osmosis membranes to enhance performance in forward osmosis", Desalination, 333, 1 (2014). https://doi.org/10.1016/j.desal.2013.11.024
  11. S. A. Riyajan, S. Chaiponban, and K. Tanbumrung, "Investigation of the preparation and physical properties of a novel semi-interpenetrating polymer network based on epoxised NR and PVA using maleic acid as the crosslinking agent", Chem. Eng. J., 153, 199 (2009). https://doi.org/10.1016/j.cej.2009.05.043
  12. P. Dydo, I. Nems, and M. Turek, "Boron removal and its concentration by reverse osmosis in the presence of polyol compounds", Sep. Purif. Technol., 89, 171 (2012). https://doi.org/10.1016/j.seppur.2012.01.018
  13. A. L. Ahmad, N. M. Yusuf, and B. S. Ooi, "Preparation and modification of poly (vinyl) alcohol membrane: Effect of crosslinking time towards its morphology", Desalination, 298, 35 (2012).
  14. L. Ni, J. Meng, X. Li, and Y. Zhang, "Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement", J. Membr. Sci., 451, 205 (2014). https://doi.org/10.1016/j.memsci.2013.09.040
  15. S. Kwon and Y. T. Lee, "Improvement of Fouling Resistance with Reverse Osmosis Membrane Using Multi-layer Silane-Epoxy Surface Modification", Membr. J., 332, 25 (2015).
  16. A. Tiraferri, N. Y. Yip, W. A. Phillip, J. D. Schiffman, and M. Elimelech, "Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure", J. Membr. Sci., 367, 340 (2011). https://doi.org/10.1016/j.memsci.2010.11.014
  17. E. Yavuz, O. Arar, M. Yuksel, U. Yuksel, and N. Kabay, "Removal of boron from geothermal water by RO system-II-effect of pH", Desalination, 310, 135 (2013). https://doi.org/10.1016/j.desal.2012.07.044
  18. I. Lindgren, "Chemical Shifts in X-ray and Photo-Electron Spectroscopy: A Historical review", J. Electron Spectrosc. Relat. Phenom., 137, 59 (2004).
  19. C. Y. Tang, Y.-N. Kown, and J. O. Leckie, "Probing the nano- and micro-scales of reverse osmosis membranes - a comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements", J. Membr. Sci., 287, 146 (2007). https://doi.org/10.1016/j.memsci.2006.10.038
  20. G. D. Kang and Y. M. Cao, "Development of antifouling reverse osmosis membranes for water treatment: A review", Water Res., 46, 584 (2012). https://doi.org/10.1016/j.watres.2011.11.041
  21. O. Ararc, H. Koseoglu, M. Kitis, M. Yuksel, N. Kabay, and S. Sarp, "Boron removal from seawater using high rejection SWRO membranes-impact of pH, feed, concentration, pressure, and cross-flow velocity", Desalination, 227, 253 (2008). https://doi.org/10.1016/j.desal.2007.06.029