DOI QR코드

DOI QR Code

Gas Separation Properties of PTMSP-GO Composite Membrane

PTMSP-GO 복합막의 기체분리 특성

  • Lee, Seul Ki (Department of Chemistry, Sangmyung University) ;
  • Hong, Se Ryeong (Kyedang College of General Education, Sangmyung University)
  • 이슬기 (상명대학교 화학과) ;
  • 홍세령 (상명대학교 계당교양교육원)
  • Received : 2018.03.21
  • Accepted : 2018.04.29
  • Published : 2018.04.30

Abstract

In this study, PTMSP-GO composite membranes were prepared by the addition of GO (graphene oxide) into PTMSP [poly (1-trimethylsilyl-1-propyne)] having high gas permeability, to study of gaseous membrane using GO. Gas permeation properties for $N_2$, $CH_4$, $CO_2$ were investigated by increasing the amount of GO in the PTMSP. PTMSP-GO composite membranes had higher gas permeability in the order of $N_2$ < $CH_4$ < $CO_2$. The gas permeation tendency of $N_2$, $CH_4$, and $CO_2$ increased as the content of GO increased from 0 to 10 wt%, but the gas permeability decreased as increased from 10 to 30 wt%. In the range of low GO contents, the gas permeability decreased due to the decrease of diffusivity because GO acts as a barrier in the composite membrane, and the gas permeability increased due to the void at the interface above the content range. And $CO_2$ has an affinity with -COOH of GO, the selectivity ($CO_2/N_2$) and the selectivity ($CO_2/CH_4$) gradually increase with increasing GO content. And the selectivity($CO_2/N_2$) showed the highest selectivity at 10.6 for PTMSP-GO 10 wt% and the selectivity ($CO_2/CH_4$) showed the highest selectivity at 3.4 for PTMSP-GO 20 wt%. However, above a certain amount of GO, selectivity ($CO_2/N_2$) and selectivity ($CO_2/CH_4$) decreased because the coagulation phenomenon between GO was increased and the solubility effect of $CO_2$ decreased. The PTMSP-GO 20 wt% composite membrane exhibited enhanced gas permeation characteristics with increased $CO_2$ permeability and selectivity ($CO_2/CH_4$) over PTMSP membrane.

본 연구는 GO (graphene oxide)를 활용한 기체 분리막 연구를 위해 기체투과도가 우수한 PTMSP [poly(1-trimethylsilyl-1-propyne)]에 GO를 첨가하여 PTMSP-GO 고분자 복합막을 제조하고, $N_2$, $CH_4$, $CO_2$에 대한 투과특성을 연구하였다. PTMSP-GO 복합막의 기체투과는 $N_2$ < $CH_4$ < $CO_2$ 순으로 높은 기체투과도 값을 가졌다. $N_2$, $CH_4$, $CO_2$의 기체투과 경향은 GO 함량 0~10 wt% 범위에서 함량이 증감함에 따라 기체투과도가 감소하다가 10~30 wt% 범위에서 증가하는 현상을 보였다. 적은 GO 함량범위에서는 복합막 내에서 GO가 barrier로 작용하여 확산성 감소로 기체투과도가 감소하였고, 일정 함량범위 이상에서는 계면에 생기는 void로 인해 기체투과도가 증가하였다. 그리고 $CO_2$는 GO의 -COOH에 친화성을 가지고 있어 선택도($CO_2/N_2$)와 선택도($CO_2/CH_4$)는 GO 함량이 증가하면서 점차 증가하는데 선택도($CO_2/N_2$)는 PTMSP-GO 10 wt%에서 10.6로 가장 높은 선택도를 보였고, 선택도($CO_2/CH_4$)는 PTMSP-GO 20 wt%에서 3.4로 가장 높은 선택도를 보였다. 그러나 일정 함량 이상에서 선택도($CO_2/N_2$)와 선택도($CO_2/CH_4$) 모두 감소하였는데 GO 함량이 많아지면서 GO 충진물 간의 응집현상이 심해지고, GO 응집물로 인하여 $CO_2$에 대한 용해도 효과가 낮아져 선택도가 감소되었다. PTMSP-GO 20 wt% 복합막은 PTMSP 단일막보다 증가된 $CO_2$ 투과도와 선택도($CO_2/CH_4$)를 보이면서 기체투과 특성이 향상되었다.

Keywords

References

  1. J. Ma, D. Ping, and X. Dong, "Recent developments of graphene oxide-based membranes: A review", Membranes, 7, 52 (2017). https://doi.org/10.3390/membranes7030052
  2. S. R. Reijerkerk, R. Jordana, K. Nijmeijer, and M. Wessling, "Highly hydrophilic, rubbery membranes for $CO_2$ capture and dehydration of flue gas", Int. J. Greenh. Gas. Con., 5, 26 (2011). https://doi.org/10.1016/j.ijggc.2010.06.014
  3. H. Sijbesma, K. Nymeijer, R. V. Marwijk, R. Heijboer, J. Potreck, and M. Wessling, "Flue gas dehydration using polymer membranes", J. Membr. Sci., 313, 263 (2008). https://doi.org/10.1016/j.memsci.2008.01.024
  4. D. Q. Vu, W. J. Koros, and S. J. Miller, "Mixed matrix membranes using carbon molecular sieves. I. Preparation and experimental results", J. Membr. Sci., 211, 311 (2003). https://doi.org/10.1016/S0376-7388(02)00429-5
  5. T. Li, Y. Pan, K. V. Peinemann, and Z. Lai, "Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers", J. Membr. Sci., 425-426, 235 (2013). https://doi.org/10.1016/j.memsci.2012.09.006
  6. R. D. Noble, "Perspectives on mixed matrix membranes", J. Membr. Sci., 378, 393 (2011). https://doi.org/10.1016/j.memsci.2011.05.031
  7. Y. Shen and A. C. Lua, "Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic filler (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation", Chem. Eng. J., 192, 201 (2012). https://doi.org/10.1016/j.cej.2012.03.066
  8. R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, "Mixed matrix membranes of pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  9. J. S. Park, J. W. Rhim, B. G. Park, S. H. Kong, and S. Y. Nam, "Preparation and gas barrier properties of chitosan/clay nanocomposite film", Membr. J., 15, 247 (2005).
  10. L. Ge, Z. Zhu, and V. Rudolph, "Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane", Sep. Purif. Technol., 78, 76 (2011). https://doi.org/10.1016/j.seppur.2011.01.024
  11. F. H. Akhtar, M. Kumar, and K. V. Peinemann, "Pebax 1657/graphene oxide composite membranes for improved water vapor separation", J. Membr. Sci., 525, 187 (2017). https://doi.org/10.1016/j.memsci.2016.10.045
  12. Y. Cui, S. I. Kundalwal, and S. Kumar, "Gas barrier performance of graphene/polymer nanocomposites", Carbon, 98, 313 (2016). https://doi.org/10.1016/j.carbon.2015.11.018
  13. G. Shi, Q. Meng, Z. Zhao, H. C. Kuan, A. Michelmore, and J. Ma, "Facile fabrication of graphene membranes with readily tunable structures", Appl. Mater. Inter., 7, 13745 (2015). https://doi.org/10.1021/am5091287
  14. K. K. Sadasivuni, D. Ponnamma, S. Thomas, and Y. Grohens, "Evolution from graphite to graphene elastomer composites", Prog. Polym. Sci., 39, 749 (2014). https://doi.org/10.1016/j.progpolymsci.2013.08.003
  15. A. Achari and M. Eswaramoorthy, "Casting molecular channels through domain formation: high performance graphene oxide membranes for $H_2/CO_2$ separation", J. Mater. Chem. A., 4, 7560 (2016). https://doi.org/10.1039/C6TA00296J
  16. H. W. Kim, H. W. Yoon, S. M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J. Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphen and graphene oxide membranes", Science, 342, 91 (2013). https://doi.org/10.1126/science.1236098
  17. S. Morimune, T. Nishino, and T. Goto, "Ecological approach to graphene oxide reinforced poly (methyl methacrylate) nanocomposites", ACS Appl. Mater. Interfaces, 4, 3596 (2012). https://doi.org/10.1021/am3006687
  18. G. Srinivas, J. W. Ford, and T. Yildirim, "Porous graphene oxide frameworks: synthesis and gas sorption properties", J. Mater. Chem., 21, 11323 (2011). https://doi.org/10.1039/c1jm11699a
  19. H. D. Huang, P. G. Ren, J. Chen, W. Q. Zhang, X. Ji, and Z. M. Li, "High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films", J. Membr. Sci., 409-410, 156 (2012). https://doi.org/10.1016/j.memsci.2012.03.051
  20. T. C. Merkel, V. I. Bondar, K. Nagai, and B. D. Freeman, "Sorption and transport of hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne)", J. Polym. Sci. Pol. Phy., 38, 273 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000115)38:2<273::AID-POLB1>3.0.CO;2-X
  21. D. R. Paul, "Creating new types of carbon-based membranes", Science, 335, 413 (2012). https://doi.org/10.1126/science.1216923
  22. D. Zhao, J. Ren, Y. Qiu, H. Li, K. Hua, X. Li, and M. Deng, "Effect of graphene oxide on the behavior of poly(amide-6-b-ethylene oxide)/graphen oxide mixed-matrix membrane in the permeation process", J. Appl. Polym. Sci., 132, 42624 (2015).
  23. K. D. Sitter, P. Winberg, J. D'Haen, C. Dotremont, R. Leysen, J. A. Martens, S. Mullens, F. H. J. Maurer, and I. F. J. Vankelecom, "Silica filled poly(1-trimethylsily-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics", J. Membr. Sci., 278, 83 (2006). https://doi.org/10.1016/j.memsci.2005.10.046
  24. S. K. Lee and S. R. Hong, "Gas permeation properties of PTMSP-ZIF composite membrane", Appl. Chem. Eng., 26, 413 (2015). https://doi.org/10.14478/ace.2015.1041
  25. J. Shen, "Size effects of graphene oxide on mixed matrix membranes for $CO_2$ separation", AIChE J., 62, 2843 (2016). https://doi.org/10.1002/aic.15260
  26. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030