DOI QR코드

DOI QR Code

Delta Moves and Arrow Polynomials of Virtual Knots

  • Jeong, Myeong-Ju (Department of Mathematics, Korea Science Academy) ;
  • Park, Chan-Young (Department of Mathematics, College of Natural Sciences, Kyungpook National University)
  • Received : 2017.03.16
  • Accepted : 2017.08.09
  • Published : 2018.03.23

Abstract

${\Delta}-moves$ are closely related with a Vassiliev invariant of degree 2. For classical knots, M. Okada showed that the second coefficients of the Conway polynomials of two knots differ by 1 if the two knots are related by a single ${\Delta}-move$. The first author extended the Okada's result for virtual knots by using a Vassiliev invariant of virtual knots of type 2 which is induced from the Kauffman polynomial of a virtual knot. The arrow polynomial is a generalization of the Kauffman polynomial. We will generalize this result by using Vassiliev invariants of type 2 induced from the arrow polynomial of a virtual knot and give a lower bound for the number of ${\Delta}-moves$ transforming $K_1$ to $K_2$ if two virtual knots $K_1$ and $K_2$ are related by a finite sequence of ${\Delta}-moves$.

Keywords

References

  1. J. S. Birman and X.-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math., 111(1993), 225-270. https://doi.org/10.1007/BF01231287
  2. H. A. Dye and L. H. Kauffman, Virtual crossing number and the arrow polynomial, J. Knot Theory Ramifications, 18(10)(2009), 1335-1357. https://doi.org/10.1142/S0218216509007166
  3. M. Goussarov, M. Polyak and O. Viro, Finite type invariants of classical and virtual knots, Topology, 39(2000), 1045-1068. https://doi.org/10.1016/S0040-9383(99)00054-3
  4. M. N. Goussarov, On n-equivalence of knots and invariants of finite degree, in "Topol- ogy of Manifolds and Varieties"(O. Viro, Editor), Amer. Math. Soc., Providence 1994, 173-192.
  5. M. N. Goussarov, Finite type invariants and n-equivalence of 3-manifolds, C. R. Acad. Sci. Paris, Topologie/Topology 1999, t. 329, Serie I, 517-522. https://doi.org/10.1016/S0764-4442(00)80053-1
  6. M. N. Goussarov, Variations of knotted graphs. The geometric technique of n-equivalence, Algebra i Analiz, 12(4)(2000), 79-125.
  7. K. Habiro, Claspers and finite type invariants of links, Geom. and Topol., 4(2000), 1-83. https://doi.org/10.2140/gt.2000.4.1
  8. A. Ishii, The pole diagram and the Miyazawa polynomial, Internat. J. Math., 19(2)(2008), 193-207. https://doi.org/10.1142/S0129167X08004601
  9. T. Kanenobu, Forbidden moves unknot a virtual knot, J. Knot Theory Ramifications, 10(1)(2001), 89-96. https://doi.org/10.1142/S0218216501000731
  10. M.-J. Jeong, A lower bound for the number of forbidden moves to unknot a long virtual knot, J. Knot Theory Ramifications, 22(6)(2013), 1350024, 13pp.
  11. M.-J. Jeong, Delta moves and Kauffman polynomials of virtual knots, J. Knot Theory Ramifications, 23(10)(2014), 1450053, 17pp.
  12. V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc., 12(1985), 103-111. https://doi.org/10.1090/S0273-0979-1985-15304-2
  13. M.-J. Jeong and C.-Y. Park, Similarity indices and the Miyazawa polynomials of virtual links, J. Knot Theory Ramifications, 23(7)(2014), 1460003, 17pp.
  14. L. H. Kauffman, State models and the Jones polynomial, Topology, 26(1987), 395-407. https://doi.org/10.1016/0040-9383(87)90009-7
  15. L. H. Kauffman, Virtual knot theory, Europ. J. Combinatorics, 20(1999), 663-690. https://doi.org/10.1006/eujc.1999.0314
  16. T. Kanenobu and R. Nikkuni, Delta move and polynomial invariants of links, Topology Appl., 146/147(2005), 91-104. https://doi.org/10.1016/j.topol.2003.02.003
  17. Y. Miyazawa, Magnetic graphs and an invariant for virtual links, J. Knot Theory Ramifications, 15(10)(2006), 1319-1334. https://doi.org/10.1142/S0218216506005135
  18. Y. Miyazawa, A multi-variable polynomial invariant for virtual knots and links, J. Knot Theory Ramifications, 17(11)(2008), 1311-1326. https://doi.org/10.1142/S0218216508006658
  19. H. Murakami, On derivatives of the Jones polynomial, Kobe J. Math., 3(1986), 61-64.
  20. H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann., 284(1989), 75-89. https://doi.org/10.1007/BF01443506
  21. Y. Nakanishi, Delta link homotopy for two component links, Topology Appl., 121(2002), 169-182. https://doi.org/10.1016/S0166-8641(01)00116-X
  22. Y. Nakanishi and T. Shibuya, Relations among self Delta-equivalence and self Sharp- equivalences for links, Knots in Hellas '98, World Scientific, Singapore, 2000, 353-360.
  23. Y. Nakanishi and Y. Ohyama, Knots with given finite type invariants and $C_k$-distances, J. Knot Theory Ramifications, 10(7)(2001), 1041-1046. https://doi.org/10.1142/S0218216501001335
  24. S. Nelson, Unknotting virtual knots with Gauss diagram forbidden moves, J. Knot Theory Ramifications, 10(6)(2001), 931-935. https://doi.org/10.1142/S0218216501001244
  25. K. Nakamura, Y. Nakanishi and Y. Uchida, Delta-unknotting number for knots, J. Knot Theory Ramifications, 7(5)(1998), 639-650. https://doi.org/10.1142/S0218216598000334
  26. M. Okada, Delta-unknotting operation and the second coefficient of the Conway polynomial, J. Math. Soc. Japan, 42(1990), 713-717. https://doi.org/10.2969/jmsj/04240713
  27. M. Sakurai, 2- and 3-variations and finite type invariants of degree 2 and 3, J. Knot Theory Ramifications, 22(8)(2013), 11350042, 20pp.