• Title/Summary/Keyword: virtual knot

Search Result 14, Processing Time 0.021 seconds

Polynomials and Homotopy of Virtual Knot Diagrams

  • Jeong, Myeong-Ju;Park, Chan-Young;Park, Maeng Sang
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.1
    • /
    • pp.145-161
    • /
    • 2017
  • If a virtual knot diagram can be transformed to another virtual one by a finite sequence of crossing changes, Reidemeister moves and virtual moves then the two virtual knot diagrams are said to be homotopic. There are infinitely many homotopy classes of virtual knot diagrams. We give necessary conditions by using polynomial invariants of virtual knots for two virtual knots to be homotopic. For a sequence S of crossing changes, Reidemeister moves and virtual moves between two homotopic virtual knot diagrams, we give a lower bound for the number of crossing changes in S by using the affine index polynomial introduced in [13]. In [10], the first author gave the q-polynomial of a virtual knot diagram to find Reidemeister moves of virtually isotopic virtual knot diagrams. We find how to apply Reidemeister moves by using the q-polynomial to show homotopy of two virtual knot diagrams.

Forbidden Detour Number on Virtual Knot

  • Yoshiike, Shun;Ichihara, Kazuhiro
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.205-212
    • /
    • 2021
  • We show that the forbidden detour move, essentially introduced by Kanenobu and Nelson, is an unknotting operation for virtual knots. Then we define the forbidden detour number of a virtual knot to be the minimal number of forbidden detour moves necessary to transform a diagram of the virtual knot into the trivial knot diagram. Some upper and lower bounds on the forbidden detour number are given in terms of the minimal number of real crossings or the coefficients of the affine index polynomial of the virtual knot.

The Second Reidemeister Moves and Colorings of Virtual Knot Diagrams

  • Jeong, Myeong–Ju;Kim, Yunjae
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.347-361
    • /
    • 2022
  • Two virtual knot diagrams are said to be equivalent, if there is a sequence S of Reidemeister moves and virtual moves relating them. The difference of writhes of the two virtual knot diagrams gives a lower bound for the number of the first Reidemeister moves in S. In previous work, we introduced a polynomial qK(t) for a virtual knot diagram K which gave a lower bound for the number of the third Reidemeister moves in the sequence S. In this paper we define a new polynomial from a coloring of a virtual knot diagram. Using this polynomial, we give a lower bound for the number of the second Reidemeister moves in S. The polynomial also suggests the design of the sequence S.

ARC SHIFT NUMBER AND REGION ARC SHIFT NUMBER FOR VIRTUAL KNOTS

  • Gill, Amrendra;Kaur, Kirandeep;Madeti, Prabhakar
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.1063-1081
    • /
    • 2019
  • In this paper, we formulate a new local move on virtual knot diagram, called arc shift move. Further, we extend it to another local move called region arc shift defined on a region of a virtual knot diagram. We establish that these arc shift and region arc shift moves are unknotting operations by showing that any virtual knot diagram can be turned into trivial knot using arc shift (region arc shift) moves. Based upon the arc shift move and region arc shift move, we define two virtual knot invariants, arc shift number and region arc shift number respectively.

Finite Type Invariants and the Kauffman Bracket Polynomials of Virtual Knots

  • Jeong, Myeong-Ju;Park, Chan-Young;Yeo, Soon Tae
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.639-653
    • /
    • 2014
  • In [9], Kauffman introduced virtual knot theory and generalized many classical knot invariants to virtual ones. For example, he extended the Jones polynomials $V_K(t)$ of classical links to the f-polynomials $f_K(A)$ of virtual links by using bracket polynomials. In [4], M. Goussarov, M. Polyak and O. Viro introduced finite type invariants of virtual knots. In this paper, we give a necessary condition for a virtual knot invariant to be of finite type by using $t(a_1,{\cdots},a_m)$-sequences of virtual knots. Then we show that the higher derivatives $f_K^{(n)}(a)$ of the f-polynomial $f_K(A)$ of a virtual knot K at any point a are not of finite type unless $n{\leq}1$ and a = 1.

The Forbidden Number of a Knot

  • CRANS, ALISSA S.;MELLOR, BLAKE;GANZELL, SANDY
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.485-506
    • /
    • 2015
  • Every classical or virtual knot is equivalent to the unknot via a sequence of extended Reidemeister moves and the so-called forbidden moves. The minimum number of forbidden moves necessary to unknot a given knot is an invariant we call the forbidden number. We relate the forbidden number to several known invariants, and calculate bounds for some classes of virtual knots.

Delta Moves and Arrow Polynomials of Virtual Knots

  • Jeong, Myeong-Ju;Park, Chan-Young
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.183-202
    • /
    • 2018
  • ${\Delta}-moves$ are closely related with a Vassiliev invariant of degree 2. For classical knots, M. Okada showed that the second coefficients of the Conway polynomials of two knots differ by 1 if the two knots are related by a single ${\Delta}-move$. The first author extended the Okada's result for virtual knots by using a Vassiliev invariant of virtual knots of type 2 which is induced from the Kauffman polynomial of a virtual knot. The arrow polynomial is a generalization of the Kauffman polynomial. We will generalize this result by using Vassiliev invariants of type 2 induced from the arrow polynomial of a virtual knot and give a lower bound for the number of ${\Delta}-moves$ transforming $K_1$ to $K_2$ if two virtual knots $K_1$ and $K_2$ are related by a finite sequence of ${\Delta}-moves$.

Finite Type Invariants and Virtual Twist Moves of Virtual Knots

  • Jeong, Myeong-Ju
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.449-461
    • /
    • 2006
  • Generalizing twist moves of classical knots, we introduce $t(a_1,{\cdots},a_m)$-moves of virtual knots for an $m$-tuple ($a_1,{\cdots},a_m$) of nonzero integers. In [4], M. Goussarov, M. Polyak and O. Viro introduced finite type invariants of virtual knots and Gauss diagram formulae giving combinatorial presentations of finite type invariants. By using the Gauss diagram formulae for the finite type invariants of degree 2, we give a necessary condition for a virtual long knot K to be transformed to a virtual long knot K' by a finite sequence of $t(a_1,{\cdots},a_m)$-moves for an $m$-tuple ($a_1,{\cdots},a_m$) of nonzero integers with the same sign.

  • PDF

VARIATIONS IN WRITHES OF VIRTUAL KNOTS UNDER A LOCAL MOVE

  • Gill, Amrendra;Madeti, Prabhakar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.303-318
    • /
    • 2022
  • n-writhes denoted by Jn(K) are virtual knot invariants for n ≠ 0 and are closely associated with coefficients of some polynomial invariants of virtual knots. In this work, we investigate the variations of Jn(K) under arc shift move and conclude that n-writhes Jn(K) vary randomly in the sense that it may change by any random integer value under one arc shift move. Also, for each n ≠ 0 we provide an infinite family of virtual knots which can be distinguished by n-writhes Jn(K), whereas odd writhe J(K) fails to do so.