DOI QR코드

DOI QR Code

피해파급에 대한 고찰을 통한 전력 및 상수도 네트워크의 강건성 예측

Robustness Estimation for Power and Water Supply Network : in the Context of Failure Propagation

  • Lee, Seulbi (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Park, Moonseo (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Lee, Hyun-Soo (Department of Architecture and Architectural Engineering, Seoul National University)
  • 투고 : 2017.10.19
  • 심사 : 2017.12.20
  • 발행 : 2018.05.31

초록

손상된 라이프라인 시스템의 공공서비스 제공 지연 예측은 지진 대응 체계 마련의 첫 단계이다. 그러나 라이프라인 시스템의 서비스제공가능도는 개별 구조물의 물리적 손상뿐만 아니라 인접한 구조물들로부터의 피해파급에 의해 변동될 수 있다. 이에 본 연구는 라이프라인 시스템의 기능 저하를 유발하는 공통원인피해와 연쇄피해의 발생 확률을 추론하기 위해 베이지안 모형을 작성하고 피해의 인과관계를 고려하여 최종 수요자 중심의 네트워크 강건성을 평가하는 방안을 제시하였다. 또한 완화대책에 따른 네트워크 강건성을 분석하기 위해 국내 대구경북지역의 전력 및 상수도 시스템을 대상으로 지진 규모에 따른 공공서비스의 공급 지연 확률을 예측하였다. 그 결과 사례 지역의 경우 안정적인 전력과 상수 수급을 위해 라이프라인 네트워크를 구성하는 노드들 간 피해파급을 저감하는 것이 효과적임을 확인하였다. 본 연구는 지진 피해 진단의 다양한 불확실성 간 인과관계를 도식화하였다는 데에 의의가 있으며, 지속 가능한 공공서비스 확보를 위한 지역단위 대책 수립을 지원할 수 있을 것으로 기대된다.

In the aftermath of an earthquake, seismic-damaged infrastructure systems loss estimation is the first step for the disaster response. However, lifeline systems' ability to supply service can be volatile by external factors such as disturbances of nearby facilities, and not by own physical issue. Thus, this research develops the bayesian model for probabilistic inference on common-cause and cascading failure of seismic-damaged lifeline systems. In addition, the authors present network robustness estimation metrics in the context of failure propagation. In order to quantify the functional loss and observe the effect of the mitigation plan, power and water supply system in Daegu-Gyeongbuk in South Korea is selected as case network. The simulation results show that reduction of cascading failure probability allows withstanding the external disruptions from a perspective of the robustness improvement. This research enhances the comprehensive understanding of how a single failure propagates to whole lifeline system performance and affected region after an earthquake.

키워드

참고문헌

  1. Atkinson, G. M., and Silva, W. (2000). "Stochastic modeling of California ground motions." Bulletin of the Seismological Society of America, 90(2), pp. 255-274. https://doi.org/10.1785/0119990064
  2. Bensi, M. T. (2010). "A Bayesian network methodology for infrastructure seismic risk assessment and decision support." University of California, Berkeley.
  3. Bobbio, A., Portinale, L., Minichino, M., and Ciancamerla, E. (2001). "Improving the analysis of dependable systems by mapping FTs into bayesian networks." Reliability Engineering and System Safety, 71, pp. 249-60. https://doi.org/10.1016/S0951-8320(00)00077-6
  4. Di Giorgio, A., and Liberati, F. (2012). "A Bayesian network-based approach to the critical infrastructure interdependencies analysis." IEEE Systems Journal, 6(3), pp. 510-519. https://doi.org/10.1109/JSYST.2012.2190695
  5. Dunn, S., and Wilkinson, S. (2013). "Identifying critical components in infrastructure networks using network topology." Journal of Infrastructure Systems, 19(2), pp. 157-165. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000120
  6. Federal Emergency Management Agency. (2003). "HAZUS-MH 2.1 earthquake model technical manual." (Last updated: Jan., 29, 2015)
  7. Goda, K., Kiyota, T., Pokhrel, R. M., Chiaro, G., Katagiri, T., Sharma, K., and Wilkinson, S. (2015). "The 2015 Gorkha Nepal earthquake: insights from earthquake damage survey." Frontiers in Built Environment, pp. 1-8.
  8. Haimes, Y., and Jiang, P. (2001). "Leontief-based model of risk in complex interconnected infrastructures." Journal of Infrastructure System, 7(1), pp. 1-12. https://doi.org/10.1061/(ASCE)1076-0342(2001)7:1(1)
  9. Jo, N., and Bagg, C. (2003). "Estimation of spectrum decay parameter X and stochastic prediction of strong ground motions in Southeastern Korea." Journal of the Earthquake Engineering Society of Korea, 7(6), pp. 59-70. https://doi.org/10.5000/EESK.2003.7.6.059
  10. Kanno, T., Narita, A., Morikawa, N., Fujiwara, H., and Fukushima Y. (2006). "A new attenuation relation for strong ground motion in Japan based on recorded data." Bulletin of the Seismological Society of America, 96(3), pp. 879-897. https://doi.org/10.1785/0120050138
  11. Kawakami, H. (1990). "Earthquake physical damage and functional functionality of lifeline network models." Earthquake Engineering and Structural Dynamics, 19(8), pp. 1153-1165. https://doi.org/10.1002/eqe.4290190806
  12. Kennedy, R. P., and Ravindra M. K. (1984). "Seismic fragilities for nuclear power plant studies." Nuclear Engineering and Design, 79(1), pp. 47-68. https://doi.org/10.1016/0029-5493(84)90188-2
  13. Khakzad, N. (2015). "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures." Reliability Engineering and System Safety, 138, pp. 263-272. https://doi.org/10.1016/j.ress.2015.02.007
  14. Kim, M., Choun, Y., Choi, I., and Oh, K. (2009). "Seismic fragility analysis of substation systems by using the fault tree method." Journal of the Earthquake Engineering Society of Korea, 13(2), pp. 47-58. https://doi.org/10.5000/EESK.2009.13.2.047
  15. Kircher, C. A., Whitman, R. V., and Holmes., W. T. (2006). "HAZUS earthquake loss estimation methods." Natural Hazards Review, 7(2), pp. 45-59. https://doi.org/10.1061/(ASCE)1527-6988(2006)7:2(45)
  16. Korea Atomic Energy Research Institute (KAERI) (2008). The evaluation of seismic fragility curves for electric power systems in Korea, KAERI Research Report, 2008-02.
  17. Lee, C. (2017). "Earthquake engineering analysis of ground accelerations measured in the 912 Gyeong- ju earthquake." The Magazine of the Korean Society of Civil Engineers, 65(4), pp. 8-13.
  18. Lee, S., Park, M., Lee, H., and Hwang, S. (2014). "Analysis of the degraded performance and restoration plan of lifeline systems considering interdependency in the post -disaster." Korean Journal of Construction Engineering and Management, KICEM, 15(4), pp. 139-149. https://doi.org/10.6106/KJCEM.2014.15.4.139
  19. Norris, F. H., Stevens, S. P., Pfefferbaum, B., Wyche, K. F., and Pfefferbaum, R. L. (2008). "Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness." American journal of community psychology, 41(1-2), pp. 127- 150. https://doi.org/10.1007/s10464-007-9156-6
  20. Oh, S., and Shin, S. (2013). "Analytical study on the distance-attenuation equation of volcanic earthquakes." Journal of the Regional Association of Architectural Institute of Korea, 15(6), pp. 227-235.
  21. Ouyang, M. (2014). "Review on modeling and simulation of interdependent critical infrastructure systems." Reliability Engineering and System Safety, 121, pp 43-60. https://doi.org/10.1016/j.ress.2013.06.040
  22. Rinaldi, S. M., Peerenboom, J. P., and Kelly, T. K. (2001). "Identifying, understanding, and analyzing critical infrastructure interdependencies." IEEE Control Systems, 21(6), pp. 11-25. https://doi.org/10.1109/37.969131
  23. Romero, N., O'Rourke, T., Nozick, L., and Davis C. (2010). "Seismic hazards and water supply performance." Journal of Earthquake Engineering, 14(7), pp. 1022-1043. https://doi.org/10.1080/13632460903527989
  24. Tsuruta, M., Goto, Y., Shoji, Y., and Kataoka, S. (2008). "Damage propagation caused by interdependency among critical infrastructures." Proceedings of the 14th World Conference on Earthquake Engineering, IAEE, Tokyo, Japan.
  25. Yun, K., Park, D., and Park, S. (2009). "The statistical model of fourier acceleration spectra according to seismic intensities for earthquak0es in Korea." Journal of the Earthquake Engineering Society of Korea, 13(6), pp. 11-25. https://doi.org/10.5000/EESK.2009.13.6.011
  26. Zio, E., and Piccinelli, R. (2010). "Randomized flow model and centrality measure for electrical power transmission network analysis." Reliability Engineering and System Safety, 95(4), pp. 379-385. https://doi.org/10.1016/j.ress.2009.11.008