DOI QR코드

DOI QR Code

Analysis of Long-term Linear Trends of the Sea Surface Height Along the Korean Coast based on Quantile Regression

분위회귀를 이용한 한반도 연안 해면 고도의 장주기 선형 추세 분석

  • LIM, BYEONG-JUN (Department of Earth Science Education, Kongju National University) ;
  • CHANG, YOU-SOON (Department of Earth Science Education, Kongju National University)
  • 임병준 (공주대학교 지구과학교육과) ;
  • 장유순 (공주대학교 지구과학교육과)
  • Received : 2017.12.27
  • Accepted : 2018.04.03
  • Published : 2018.05.31

Abstract

This study analyzed the long-term linear trends of the sea surface height around the Korea marginal seas for the period of 1993~2016 by using quantile regression. We found significant difference about 2~3 mm/year for the linear trend between OLS (ordinary least square) and median (50%) quantile regression especially in the Yellow Sea, which is affected by extreme events. Each area shows different trend for each quantile (lower (1%), median (50%) and upper (99%)). Most areas of the Yellow Sea show increasing trend in both low and upper quantile, but significant "upward divergence tendency". This implies that significant increasing trend of upper quantile is higher than that of lower quantile in this area. Meanwhile, South Sea of Korea generally shows "upward convergence tendency" representing that increasing trend of upper quantile is lower than that of lower quantile. This study also confirmed that these tendencies can be eliminated by removing major tidal components from the harmonic analysis. Therefore, it is assumed that the regional characteristics are related to the long term change of tide amplitude.

본 연구에서는 분위회귀를 이용하여 1993~2016년 동안의 한반도 조위 자료의 장주기 선형 추세를 분석하였다. 일반 선형회귀(OLS: Ordinary Least Square)와 50% 중간 분위 회귀 결과를 비교했을 때 특히 황해에서 약 2~3 mm/year의 회귀 결과의 차이를 발견하였으며, 이는 극한 값 변화에 기인함을 확인할 수 있었다. 또한 해역별로 하위(1%) 분위와 중간(50%) 분위, 상위(99%) 분위의 값이 모두 다르게 나타났다. 황해의 대부분 지역에서는 상위 분위와 하위 분위가 모두 증가하는 경향을 나타냈으나, 유의미한 "상향 발산형" 회귀 결과를 보였다. 이는 상위 분위가 중간 분위에 비해 유의미하게 크게 나타나는 경향을 의미한다. 대한민국 남해안에서는 상위 분위가 하위 분위보다 더 작은 증가 값을 가지는 "상향 수렴형" 회귀 결과가 특징적으로 나타났다. 이러한 경향은 조화 분석을 통해 알려진 조석 분조들을 제거한 결과에서는 없어지는 것을 확인하였다. 그러므로 분위 회귀의 지역적 특성은 조석 세기의 장주기 변동과 연관이 있다고 추측된다.

Keywords

References

  1. Barbosa, S.M. and K.S. Madsen, 2012. Quantile analysis of relative sea-level at the Hornbaek and Gedser Tide Gauges. Geodesy for Planet Earth, 567-571.
  2. Barbosa, S.M., 2008. Quantile trends in Baltic sea level. Geophys. Res. Lett., 35: L22704. https://doi.org/10.1029/2008GL035182
  3. Barbosa, S.M., M.J. Fernandes and M.E. Silva, 2004. Nonlinear sea level trends from European tide gauge records. Annales Geophysicae, 22: 1465-1472.
  4. Buchinsky, M., 1994. Changes in the US wage structure 1963-1987: Application of quantile regression. Econometrica., 405-458.
  5. Cade, B.S. and B.R. Noon, 2003. A gentle introduction to quantile regression for ecologists, Front. Eco. Env., 1: 412-420. https://doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2
  6. Elsner, J.B., J.P. Kossin, T.H. Jagger, 2008. The increasing intensity of the strongest tropical cyclones. Nature, 455: 92-95. https://doi.org/10.1038/nature07234
  7. Hao, L. and D.Q. Naiman, 2007. Quantile regression (No. 149), Sage.
  8. Intergovernmental Oceanographic Commission (IOC), 1985. Manual on sea level measurement and interpretation, Vol. 1. Basic Procedures. IOC Manuals and Guides No. 14, IOC, Paris, 83 pp.
  9. IPCC, 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  10. Jeon, D.C., 2008. Relative sea-level change around the Korean peninsula. Ocean Polar Res., 30: 373-378. https://doi.org/10.4217/OPR.2008.30.4.373
  11. Jevrejeva, S., A. Grinsted, J.C. Moore and S. Holgate, 2006. Nonlinear trends and multiyear cycles in sea level records. Geophys. Res. Oceans, 111: C09012.
  12. Jung, T.S., 2014. Change of mean sea level due to coastal development and climate change in the western coast of Korean peninsula. J. Korean Soc. Coast Ocean Eng., 26: 120-130. https://doi.org/10.9765/KSCOE.2014.26.3.120
  13. Kang, J.W., S.R. Moon and N.S. Oh, 2005. Sea level rise at the southwestern coast. J. Korean Soc. Civil Eng., 25: 151-157.
  14. KHOA, 2015. Analysis and prediction of sea level variation result report. 252 pp.
  15. KHOA, 2016. Analysis and Prediction of Sea Level change in Response to Climate Change around Korean peninsula result report. 278 pp.
  16. Ko, D.H., S.T. Jeong and H. Cho, 2013. Statistical characteristics of hourly tidal levels around the Korean peninsula. J. Korean Soc. Coast. Ocean Eng., 25: 365-373. https://doi.org/10.9765/KSCOE.2013.25.6.365
  17. Koenker, R. and F. Schorfheide, 1994. Quantile spline models for global temperature change. Climatic Change, 28: 395-404. https://doi.org/10.1007/BF01104081
  18. Koenker, R. and G. Bassett Jr, 1978. Regression quantiles, Econometrica., 33-50.
  19. Koenker, R. and K.F. Hallock, 2001. Quantile regression. J. Econ. Perspect., 15: 143-156. https://doi.org/10.1257/jep.15.4.143
  20. Koenker, R., 2005. Quantile regression (No. 38), Cambridge university press.
  21. Korea Hydrographic and Oceanographic Agency(KHOA), 2012. Precise analysis and prediction of sea level fluctuation (4th) result report. 505 pp.
  22. Lee, K., H.J. Baek and C.H. Cho, 2012. Analysis of changes in extreme precipitation in Seoul using quantile regression. J. Clim. Res., 7: 199-209.
  23. Lee, K., H.J. Baek, and C.H. Cho, 2013. Analysis of changes in extreme temperatures using quantile regression, Asia-Pac. J. Atmos. Sci., 49: 313-323. https://doi.org/10.1007/s13143-013-0030-1
  24. Lim, B.J. and Y.S. Chang, 2016. Development of synthetic regression diagram for analyzing linear trend of sea surface height, temperature, and salinity around the Korean marginal seas. The Sea, 21: 67-77. https://doi.org/10.7850/jkso.2016.21.2.67
  25. Mazvimavi, D., 2010. Investigating changes over time of annual rainfall in Zimbabwe. Hydrol. Earth Syst. Sci., 14: 2671-2679. https://doi.org/10.5194/hess-14-2671-2010
  26. Min, H.S. and C.H. Kim, 2006. Interannual variability and long-term trend of coastal sea surface temperature in Korea. Ocean Polar Res., 28: 415-423. https://doi.org/10.4217/OPR.2006.28.4.415
  27. Na, J.Y., S.K. Han, J.W. Seo, Y.G. Noh and I.S. Kang, 1997. Empirical orthogonal function analysis of surface pressure, Sea surface temperature and winds over the East Sea on the Korea (Japan Sea). Korean J. Fish. Aquat. Sci., 30: 188-202.
  28. Oh, S.Y., S.W. Jang, D.H. Kim and H.J. Yoon, 2012. Temporal and spatial variations of SL/SST in the Korean peninsula by remote sensing. J. Fish. Mar. Sci. Educ., 24: 333-345.
  29. Pawlowicz, R., B. Beardsley, and S. Lentz, 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28: 929-937. https://doi.org/10.1016/S0098-3004(02)00013-4
  30. Shirahata, K., S. Yoshimoto, T. Tsuchihara and S. Ishida, 2016. Digital filters to eliminate or separate tidal components in groundwater observation time-series data. Japan Agricultural Research Quarterly: JARQ, 50: 241-252. https://doi.org/10.6090/jarq.50.241
  31. So, B.J., H.H. Kwon and J.H. An, 2012. Trend analysis of extreme precipitation using quantile regression. J. Korea Water Resour. Assoc., 45: 815-826. https://doi.org/10.3741/JKWRA.2012.45.8.815
  32. Song, D., X.H. Wang, X. Zhu and X. Bao, 2013. Modeling studies of the far-field effects of tidal flat reclamation on tidal dynamics in the East China Seas, Estuar. Coast. Shelf Sci., 133: 147-160. https://doi.org/10.1016/j.ecss.2013.08.023
  33. Tareghian, R. and P. Rasmussen, 2013. Analysis of Arctic and Antarctic sea ice extent using quantile regression. Int. J. Climatol., 33: 1079-1086. https://doi.org/10.1002/joc.3491
  34. Thompson, R. O., 1983. Low-pass filters to suppress inertial and tidal frequencies. J. Phys. Oceanogr., 13: 1077-1083. https://doi.org/10.1175/1520-0485(1983)013<1077:LPFTSI>2.0.CO;2
  35. Uranchimeg, S., Y.T. Kim, H.H. Kwon and K.N. Hwang, 2015. A study on trend analysis in sea level data through MK test and quantile regression analysis. J. Korean Soc. Coast. Ocean Eng., 27: 94-104. https://doi.org/10.9765/KSCOE.2015.27.2.94
  36. Yoon, H.J, B.J. Hwang, S.H. Kim and S.A. Ryu, 1999. Studies on sea level and sea surface temperature changes and correlation using satellite data, Korean Meteorological Society 1999yr Spring Invited Conference, pp. 88-89.
  37. Yoon, J.J. and S.I. Kim, 2012. Analysis of long period sea level variation on tidal station around the Korea peninsula. Journal of KOSHAM., 12: 299-305.
  38. Zhang, X., L. Alexander, G.C. Hegerl, P. Jones, A.K. Tank, T.C. Peterson, B. Trewin, and F.W. Zwiers, 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change, 2: 851-870.