DOI QR코드

DOI QR Code

Distribution of Total Mercury in Korean Coastal Sediments

한반도 연안역 표층퇴적물 내 총 수은 분포 특성

  • JOE, DONGJIN (Department of Ocean Environmental Sciences, Chungnam National University) ;
  • CHOI, MANSIK (Department of Ocean Environmental Sciences, Chungnam National University) ;
  • KIM, CHANKOOK (Environmental Health & Safety Research Institute, EH R&C Co., Ltd.)
  • 조동진 (충남대학교 해양환경과학과) ;
  • 최만식 (충남대학교 해양환경과학과) ;
  • 김찬국 (환경보건안전연구소, (주)이에이치알앤씨)
  • Received : 2018.02.13
  • Accepted : 2018.05.28
  • Published : 2018.05.31

Abstract

To determine the distribution of mercury (Hg) in the coastal surface sediments around the Korean peninsula, the baseline concentration of Hg was estimated, the extent of contamination was assessed, and the factors controlling the distribution were discussed. The concentrations of Hg in surface sediments were significantly high in Jinhae-Masan Bay in the South Sea, Ulsan-Onsan Bay and Yeongil Bay in the East Sea, but Hg in other sediments showed a similar distribution to Cs and relatively very low concentration between 0.21 and $39.5{\mu}g/kg$ ($13.6{\pm}7.80{\mu}g/kg$). Compared to the sediment quality guidelines in Korea, 8 % of the surface sediments (n=282) analyzed in this study exceeded the values of the threshold effects level (TEL), and six sediments collected around Onsan Port were higher than the value of the probable effects level (PEL). The contamination levels of Hg were assessed by the enrichment factors using the baseline concentration (2.06Cs+1.75) based on the residual analysis from the linear regression line for Cs, and further, factors controlling the distribution of Hg were discussed by the comparison with geochemical substances depending upon the Hg enrichment level. Hg concentrations were correlated well with Cs concentration in the range of less than 1.69 of EF implying grain size control, while in the range of 1.69 and 4.03 Hg concentrations were correlated well with Fe oxyhyroxide and organic carbon contents, which indicates Hg was enriched by superior sorption capability. On the meanwhile, samples with higher EFs (4.03 to 74.9) showed fairly positive correlations with other metals (Cu, Zn, Pb) rather than geochemical substances. For samples in Youngil Bay and Ulsan-Onsan Bay (n=30), Hg concentrations were correlated only with other metals rather than geochemical substances implying simultaneous supply of metal particles from metal refineries. But samples at Gosung, Sokcho and Uljin coast were correlated well with organic carbon even though they had high EFs. In addition, samples in Jinhae-Masan Bay with high contents of S were enriched by relatively high sulfide formation.

한반도 연안역 표층퇴적물 내 수은의 농도 분포 특성을 파악하기 위하여 수은의 배경농도를 산정하고 오염도를 평가하였으며, 분포를 조절하는 요인을 파악하였다. 표층퇴적물 내 수은 농도는 남해연안의 진해-마산만, 동해연안의 울산-온산만, 영일만에서 상당히 높게 나타났으며, 그 외 퇴적물은 Cs와 유사한 분포를 보이며 $0.21{\sim}39.5{\mu}g/kg$ ($13.6{\pm}7.80{\mu}g/kg$) 사이의 낮은 농도를 나타내었다. 국내 해저퇴적물 해양환경기준과 비교한 결과, 전 연안의 표층퇴적물 (n=282)의 8 %가 주의기준을 초과하였으며, 동해연안의 온산항 인근 해역 (n=6)에서 관리기준을 초과하였다. Cs에 대한 선형회귀선의 잔차분석을 통해 산정한 배경농도 (2.06Cs+1.75)를 이용하여 수은 농축도를 산정하였고, 이를 이용하여 농축 정도에 따른 조절요인을 살펴보았다. 수은 농축인자 <1.69 범위에서는 퇴적물의 입도, 1.69~4.03 범위는 Fe 산화수산화물 및 유기탄소가 좋은 관계성을 보여 주요 조절요인으로 판단되었다. 4.03~74.9 범위는 다른 금속들 (Cu, Zn, Pb)과 좋은 관계성을 보였으며, 동해연안의 고성, 속초, 울진 연안에서는 유기탄소가 주요 조절요인이었고, 영일만과 울산-온산만 (n=30)에서는 주변에 위치한 중화학 공업단지의 영향으로 금속입자의 직접적인 유입에 기인한다고 판단되었다. 또한 남해연안의 진해-마산만 시료의 경우에는 상대적으로 높은 황화물 형성과 관계하여 수은 농축이 일어나는 것으로 판단되었다.

Keywords

References

  1. Allison, J.D. and T.L. Allison, 2005. Partition coefficients for metals in surface water, soil, and waste. Rep. EPA/600/R-05, 74.
  2. Asmund, G. and S.P. Nielsen, 2000. Mercury in dated greenland marine sediments. Science of the Total Environment, 245: 61-72. https://doi.org/10.1016/S0048-9697(99)00433-7
  3. Balistrieri, L.S. and T.T. Chao, 1990. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochimica et Cosmochimica Acta, 54: 739-751. https://doi.org/10.1016/0016-7037(90)90369-V
  4. Belzile, N., Y.W. Chen and R. Xu, 2000. Early diagenetic behaviour of selenium in freshwater sediments. Applied Geochemistry, 15: 1439-1454. https://doi.org/10.1016/S0883-2927(00)00011-1
  5. Benoit, J.M., C.C. Gilmour, R.P. Mason and A. Heyes, 1999. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology, 33: 951-957. https://doi.org/10.1021/es9808200
  6. Berzas, J.N., L.B. garcia and R.M.D. Rodriguez, 2003. Distribution of mercury in the aquatic environment at Almaden, Spain. Environmental Pollution (Barking, Essex: 1987), 122: 261-271. https://doi.org/10.1016/S0269-7491(02)00290-7
  7. Chae, J.S., M.S. Choi, Y.H. Song, I.K. Um and J.G. Kim, 2014. Source identification of heavy metal contamination using metal association and Pb isotopes in Ulsan Bay sediments, East Sea, Korea. Marine Pollution Bulletin, 88: 373-382. https://doi.org/10.1016/j.marpolbul.2014.07.066
  8. Chester, R., 2000. Marine geochemistry. Blackwell Science, Oxford.
  9. Choi, J.Y., S.G. Lee, J.H. Bang, D.B. Yang, G.H. Hong and K.H. Shin, 2011. On the distribution of PCBs and organochlorine pesticides in fish and sediment of the Asan Bay. Ocean and Polar Research, 33: 45-53. https://doi.org/10.4217/OPR.2011.33.1.045
  10. Choi, M.K., H.B. Moon, S.S. Kim and Y. Lee, 2005. Distribution of sewage-derived organic matter using fecal sterol in Masan Bay, Korea. Journal of Environmental Science International, 14: 481-490. https://doi.org/10.5322/JES.2005.14.5.481
  11. Clark, R.B., 2001. Marine Pollution (Fifth edition). Oxford, 236 pp.
  12. Covelli, S., J. Faganeli, M. Horvat and A. Brambati, 2001. Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (gulf of Trieste, northern Adriatic sea). Applied Geochemistry, 16: 541-558. https://doi.org/10.1016/S0883-2927(00)00042-1
  13. Ding, Z.H., J.L. Liu, L.Q. Li, H.N. Lin, H. Wu and Z.Z. Hu, 2009. Distribution and speciation of mercury in surficial sediments from main mangrove wetlands in China. Marine Pollution Bulletin, 58: 1319-1325. https://doi.org/10.1016/j.marpolbul.2009.04.029
  14. Eggleton, J. and K.V. Thomas, 2004. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30: 973-980. https://doi.org/10.1016/j.envint.2004.03.001
  15. gobeil, C., R.W. Macdonald and J.N. Smith, 1999. Mercury profiles in sediments of the Arctic Ocean basins. Environmental Science & Technology, 33: 4194-4198. https://doi.org/10.1021/es990471p
  16. Hammerschmidt, C.R. and W.F. Fitzgerald, 2004. geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science & Technology, 38: 1487-1495. https://doi.org/10.1021/es034528q
  17. Han, G.M., S.H. Hong, W.J. Shim, K.T. Ra, K.T. Kim, S.Y. Ha, M. Jang and G.B. Kim, 2016. Assessment of Persistent Organic and Heavy Metal Contamination in Busan Coast: Application of Sediment Quality Index. Ocean and Polar Res., 38: 171-184. https://doi.org/10.4217/OPR.2016.38.3.171
  18. Horowitz, A.J., 1985. A primer on trace metal-sediment chemistry. US government Printing Office, 67 pp.
  19. Horvat, M., S. Covelli, J. Faganeli, M. Logar, V. Mandic, R. Rajar, A. Sirca and D. Zagar, 1999. Mercury in contaminated coastal environments; a case study: the gulf of Trieste. Science of the Total Environment, 237: 43-56.
  20. Hwang, D.W., H.G. Jin, S.S. Kim, J.D. Kim, J.S. Park and S.G. Kim, 2006. Distribution of organic matters and metallic elements in the surface sediments of Masan harbor, Korea. Korean Journal of Fisheries and Aquatic Sciences, 39: 106-117. https://doi.org/10.5657/kfas.2006.39.2.106
  21. Hwang, D.W., I.S. Lee, M. Choi, C.S. Kim and H.C. Kim, 2015. Evaluation of pollution level for organic matter and trace metals in sediments around Taehwa river estuary, Ulsan. Korean J. of Fisheries and Aquatic Sciences, 48: 542-554. https://doi.org/10.5657/KFAS.2015.0542
  22. Hwang, D.W., I.S. Lee, M. Choi, S.Y. Kim and H.G. Choi, 2013. Evaluation of organic matter and trace metal contamination in surface sediments around the geum River Estuary using sediment quality guidelines. Korean Journal of Fisheries and Aquatic Sciences, 46: 930-940. https://doi.org/10.5657/KFAS.2013.0930
  23. Johannessen, S.C., R.W. Macdonald and K.M. Eek, 2005. Historical trends in mercury sedimentation and mixing in the Strait of georgia, Canada. Environmental Science & Technology, 39: 4361-4368. https://doi.org/10.1021/es040535i
  24. Kim, H.Y., J.C. Kim, S.Y. Kim, J.H. Lee, Y.M. Jang, M.S. Lee, J.S. Park and K.H. Lee, 2007. Monitoring of Heavy Metals in Fishes in Korea - As, Cd, Cu, Pb, Mn, Zn, Total Hg -. Korean journal of food science and technology, 39: 353-359.2
  25. Kwokal, Z., S. Franciskovic-Bilinski, H. Bilinski and M. Branica, 2002. A comparison of anthropogenic mercury pollution in Kastela Bay (Croatia) with pristine estuaries in Ore (Sweden) and Krka (Croatia). Marine Pollution Bulletin, 44: 1152-1157. https://doi.org/10.1016/S0025-326X(02)00134-0
  26. Lee, K.W., H.S. Kang and S.H. Lee, 1998. Trace elements in the Korean coastal environment. . Science of the total environment, 214: 11-19. https://doi.org/10.1016/S0048-9697(98)00051-5
  27. Lee, M.K., D.I. Lim, I.K. Um, E.B. Shin and H.S. Jung, 2003. Seasonal variation and spatial distribution of water qualities in Youngil Bay, southeast coast of Korea. Journal-Korean Society of Environmental Engineers, 25: 898-908.
  28. Leivuori, M., 1998. Heavy metal contamination in surface sediments in the gulf of Finland and comparison with the gulf of Bothnia. Chemosphere, 36: 43-59. https://doi.org/10.1016/S0045-6535(97)00285-3
  29. Lim, D.I., J.W. Choi, H.H. Shin, D.H. Jeong and H.S. Jung, 2013. Toxicological impact assessment of heavy metal contamination on macrobenthic communities in southern coastal sediments of Korea. Marine pollution bulletin, 73: 362-368. https://doi.org/10.1016/j.marpolbul.2013.05.037
  30. Lim, D.I., J.Y. Choi, H.S. Jung, H.W. Choi and Y.O. Kim, 2007b. Natural background level analysis of heavy metal concentration in Korean coastal sediments. Ocean and Polar Research, 29: 379-389. https://doi.org/10.4217/OPR.2007.29.4.379
  31. Lim, D.I., J.Y. Choi, H.S. Jung, K.C. Rho and K.S. Ahn, 2007a. Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas. Progress in Oceanography, 73: 145-159. https://doi.org/10.1016/j.pocean.2007.02.004
  32. Loring, D.H., 1990. Lithium-a new approach for the granulometric normalization of trace metal data. Marine Chemistry, 29: 155-168. https://doi.org/10.1016/0304-4203(90)90011-Z
  33. Mason, R.P., N.M. Lawson, A.L. Lawrence, J.J. Leaner, J.G. Lee and G.R. Sheu, 1999. Mercury in the Chesapeake Bay. Marine Chemistry, 65: 77-96. https://doi.org/10.1016/S0304-4203(99)00012-2
  34. Matschullat, J., R. Ottenstein and C. Reimann, 2000. geochemical background-can we calculate it?. Environmental Geology, 39: 990-1000. https://doi.org/10.1007/s002549900084
  35. Meng, M., J.B. Shi, Z.J. Yun, Z.S. Zhao, H.J. Li, Y.X. Gu, J.J. Shao, B.W. Chen, X.D. Li and G.B. Jiang, 2014. Distribution of mercury in coastal marine sediments of China: Sources and transport. Marine Pollution Bulletin, 88: 347-353. https://doi.org/10.1016/j.marpolbul.2014.08.028
  36. Mok, J.S., K.J. Lee, K.B. Shim, T.S. Lee, K.C. Song and J.H. Kim, 2010. Contents of heavy metals in marine invertebrates from the Korean coast. Journal of the Korean Society of Food Science and Nutrition, 39: 894-901. https://doi.org/10.3746/jkfn.2010.39.6.894
  37. Ogrinc, N., M. Monperrus, J. Kotnik, V. Fajon, K. Vidimova, D. Amouroux, D., Kocman, D., Tessier, E., Zizek, S. and M. Horvat, 2007. Distribution of mercury and methylmercury in deep-sea surficial sediments of the Mediterranean Sea. Marine Chemistry, 107: 31-48. https://doi.org/10.1016/j.marchem.2007.01.019
  38. Park, K.S., S.U. Park and Y.J. Kim, 2010. A Study on Numerical Assessment for Ozone, PM10 and Smog Using SMOKE-CMAQ Modeling System around Coal Power Plants on the West Coast of Korea. Proceeding of the 51st Meeting of KOSAE, 328-328.
  39. Park, S.C., D.G. Yoo, K.W. Lee and H.H. Lee, 1999. Accumulation of recent muds associated with coastal circulations, southeastern Korea Sea (Korea Strait). Continental Shelf Research, 19: 589-608. https://doi.org/10.1016/S0278-4343(98)00106-X
  40. Pempkowiak, J., D. Cossa, A. Sikora and J. Sanjuan, 1998. Mercury in water and sediments of the southern Baltic Sea. Science of the Total Environment, 213: 185-192. https://doi.org/10.1016/S0048-9697(98)00091-6
  41. Ra, K., E.S. Kim, K.T. Kim, J.K. Kim, J.M. Lee and J.Y. Choi, 2013. Assessment of heavy metal contamination and its ecological risk in the surface sediments along the coast of Korea. Journal of Coastal Research, 65(sp1): 105-110. https://doi.org/10.2112/SI65-019.1
  42. Ra, K., J.K. Kim, S.H. Hong, U.H. Yim, W.J. Shim, S.Y. Lee, Y.O. Kim, J. Lim, E.S. Kim and K.T. Kim, 2014. Assessment of pollution and ecological risk of heavy metals in the surface sediments of Ulsan Bay, Korea. Ocean Science Journal, G: 279-289. https://doi.org/10.1007/s12601-014-0028-3
  43. Reimann, C. and R.G. garrett, 2005. geochemical background-concept and reality. Science of the total environment, 350: 12-27. https://doi.org/10.1016/j.scitotenv.2005.01.047
  44. Roussiez, V., W. Ludwig, J.L. Probst and A. Monaco, 2005. Background levels of heavy metals in surficial sediments of the gulf of Lions (NW Mediterranean): an approach based on 133Cs normalization and lead isotope measurements. Environmental Pollution, 138: 167-177. https://doi.org/10.1016/j.envpol.2005.02.004
  45. Rudnick, R.L. and S. Gao, 2003. Composition of the continental crust. Treatise on geochemistry, 3: 659.
  46. Sanders, C.J., I.R. Santos, E.V. Silva-Filho and S.R. Patchineelam, 2006. Mercury flux to estuarine sediments, derived from Pb-210 and Cs-137 geochronologies (guaratuba Bay, Brazil). Marine Pollution Bulletin, 52: 1085-1089. https://doi.org/10.1016/j.marpolbul.2006.06.004
  47. Schropp, S.J., F.G. Lewis, H.L. Windom, J.D. Ryan, F.D. Calder and L.C. Burney, 1990. Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries, 13: 227-235. https://doi.org/10.2307/1351913
  48. Selin, N.E. and D.J. Jacob, 2008. Seasonal and spatial patterns of mercury wet deposition in the United States: Constraints on the contribution from North American anthropogenic sources. Atmospheric Environment, 42: 5193-5204. https://doi.org/10.1016/j.atmosenv.2008.02.069
  49. Seo, K.W., J.M. Chi and Y.H. Jang, 1998. geochemical relationship between shore sediments and near terrestrial geology in Byunsan-Taean area, west coast of Korea. Economical Environmental geology (in Korean), 31: 69-84.
  50. Shin, M.S., K.S. Bae, S.J. Kang and J.H. Kim, 2006. A study on the topography and current characteristic of the before and after construction at geum River estuary dike. Journal of Ocean Engineering and Technology, 20: 61-66.
  51. Sim, S.G., J.Y. Kim, H.C. Jin and W.Y. Kwon, 2008. Monitoring and Modeling Study for Mercury Deposition over the Yellow Sea. Proceeding of the 46th Meeting of KOSAE, 303-304.
  52. Song, Y. and M.S. Choi, 2017. Assessment of heavy metal contamination in sediments along the coast of South Korea using Cs-normalized background concentrations. Marine Pollution Bulletin, 117: 532-537. https://doi.org/10.1016/j.marpolbul.2017.02.019
  53. Song, Y., M.S. Choi, J.Y. Lee and D.J. Jang, 2014. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea. Science of the Total Environment, 482: 80-91.
  54. Song, Y.H., M.S. Choi and Y.W. Ahn, 2011. Trace metals in Chun-su Bay sediments. The Sea, 16: 169-179. https://doi.org/10.7850/jkso.2011.16.4.169
  55. Sun, C.I., D.J. Kim, Y.W. Lee and S.S. Kim, 2015. Pollution and Ecological Risk Assessment of Trace Metals in Surface Sediments of the Ulsan-Onsan Coast. Journal of the Korean Society for Marine Environment & Energy, 18: 245-253. https://doi.org/10.7846/JKOSMEE.2015.18.4.245
  56. Tessier, E., C. garnier, J.U. Mullot, V. Lenoble, M. Arnaud, M. Raynaud, M. and S. Mounier, 2011. Study of the spatial and historical distribution of sediment inorganic contamination in the Toulon bay (France). Marine Pollution Bulletin, 62: 2075-2086. https://doi.org/10.1016/j.marpolbul.2011.07.022
  57. Tomiyasu, T., A. Matsuyama, T. Eguchi, Y. Fuchigami, K. Oki, M. Horvat, Rajar, R. and H. Akagi, 2006. Spatial variations of mercury in sediment of Minamata Bay, Japan. Science of the total environment, 368: 283-290. https://doi.org/10.1016/j.scitotenv.2005.09.090
  58. Woo, H.J., J.H. Cho, K.S. Jeong, C.S. Chung, S.J. Kwon and S.M. Park, 2003. Pollution history of the Masan Bay, southeast Korea, from heavy metals and foraminifera in the subsurface sediments. Jour. Korean Earth Science Society, 24: 635-649.