DOI QR코드

DOI QR Code

The Effects of Utilizing Discussions and Debates in Science Laboratory Classes on Science Learning Motivation, Science Process Skills, and Science Academic Achievement

토의·토론을 활용한 과학 실험 수업이 과학학습동기, 과학탐구능력 및 과학 학업성취도에 미치는 효과

  • Received : 2018.02.08
  • Accepted : 2018.04.25
  • Published : 2018.05.31

Abstract

The purpose of the study was to explore the effect of using discussions and debates in science laboratory classes on science learning motivation, science process skills, and science academic achievement. Participants in this study were 6th grade students at an elementary school. Students in the experimental group participated in science laboratory classes using discussions and debates while students in the comparative group participated in common laboratory classes with a teacher-directed approach. The results of this study are as follows: by using discussions and debates in science laboratory classes, there were statistically positive effects on the students' science learning motivation and science process skills. However, there was no statistically significant difference in science academic achievement by using discussions and debates. Even so, in the narrative survey of the students'reactions after the class, students in the experimental group responded that it was much easier to understand the meaning of the scientific concepts when they used discussions and debates. Therefore, there is a need to investigate how to use discussions and debates effectively by introducing them at different time or in different ways, rather than considering that discussions and debates have no effect on science achievement. These findings provide science teachers and researchers pedagogical implications about utilizing discussions and debates in science classes.

Keywords

References

  1. 강석진, 노태희 (2000). 토론 과정에서 사회적 합의 형성을 강조한 개념 학습 전략의 효과. 한국과학교육학회지, 20(2), 250-261.
  2. 강석진, 한수진, 노태희 (2002). 과학 개념 학습에서 협동학습 소집단 토론의 효과. 한국과학교육학회지, 22(1), 93-101.
  3. 권재술, 김범기 (1994). 초.중학생들의 과학탐구능력 측정도구의 개발. 한국과학교육학회지, 14(3), 251-264.
  4. 교육과학기술부 (2011). 과학과 교육과정. 교육과학기술부 고시 제 2011-361호 [별책 9].
  5. 교육부 (2015). 과학과 교육과정. 교육부 고시 제 2015-74호 [별책 9].
  6. 교육부 (2016). 초등학교 교사용 지도서 과학 6-2. 서울: 비상교육.
  7. 김동렬 (2010). 토론 및 글쓰기 중심의 과학 탐구 학습이 고등학생들의 과학 학습 동기 및 사회적 상호 작용, 과학 글쓰기에 대한 태도에 미치는 영향. 생물교육, 38(1), 111-122.
  8. 김자희 (2012). 초등학교 과학수업에서 토의.토론 활동에 대한 교사들의 지도실태 및 인식조사. 한국교원대학교 교육대학원 석사학위 논문.
  9. 문병호 (2006). 소집단 토론수업이 고등학생의 과학적 탐구능력과 과학에 대한 태도에 미치는 영향. 한국교원대학교 교육대학원 석사학위 논문.
  10. 배진호, 옥수경 (2009). 사회적 상호작용을 강조한 초등과학 수업이 메타인지, 과학 학습 동기, 학업 성취도에 미치는 영향, 초등과학교육연구, 28(4), 519-527.
  11. 양승원 (2014). Name card 기법을 적용한 초등 과학 수업이 초등학생의 과학 학습 동기 및 학업성취도에 미치는 영향. 부산교육대학교 교육대학원 석사학위 논문.
  12. 양일호 (2007). 확인 실험 수업에서 나타나는 초등 교사들의 교수 행동 절차 분석. 초등과학교육연구, 26(4), 418-427.
  13. 윤선미, 김희백 (2011). 소집단의 논변활동을 위한 과학 탐구 과제의 개발과 적용. 한국과학교육학회지, 31(5), 694-708.
  14. 이선미 (2009). 토론 강화 탐구실험이 중학생의 학업성취도, 과학 탐구 능력 및 태도에 미치는 영향. 이화여자대학교 교육대학원 석사학위 논문.
  15. 이신영, 박소현, 김희백 (2016). 소집단 논변활동에 대한 협력적 성찰을 통한 중학생들의 소집단 규범과 논변 활동 능력 발달 탐색. 한국과학교육학회지, 36(6), 895-910. https://doi.org/10.14697/jkase.2016.36.6.0895
  16. 전민정, 김흥태, 김재근 (2012). 초등학생들의 생물에 대한 흥미의 특성 및 경험과의 관계, 생물교육, 40(1), 1-14.
  17. 정지숙 (2005). 과학실험수업에서 소집단 토론의 시기가 과학 탐구 수행 능력과 언어적 상호작용에 미치는 효과. 한국교원대학교 대학원 박사학위 논문.
  18. Aufschnaiter, C. V., Erduran, S., Osborne, J. & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131. https://doi.org/10.1002/tea.20213
  19. Chen, H.-T., Wang, H.-H., Lu, Y.-Y., Lin, H.-S. & Hong, Z.-R. (2016). Using a modified argument-driven inquiry to promote elementary school students' engagement in learning science and argumentation. International Journal of Science Education, 38(2), 170-191. https://doi.org/10.1080/09500693.2015.1134849
  20. Chinn, C. M. & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluatin inquiry tasks. Science Education, 86(2).
  21. Dreyfus, A., Jungwirth, E. & Eliovitch, R. (1990). Applying the "cognitive conflict" strategy for conceptual chancesome implications, difficulties, and problems. Science Education, 74(5), 555-569. https://doi.org/10.1002/sce.3730740506
  22. Driver, R., Newton, P. & Osborn, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  23. Duschl, R, A. & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39-72. https://doi.org/10.1080/03057260208560187
  24. Hynd, C. R., McWhorter, J. Y., Phares, V. L. & Suttles, C. W. (1994). The role of instructional variables in conceptual change in high school physics topics. Journal of Research in Science Teaching, 31(9), 933-946. https://doi.org/10.1002/tea.3660310908
  25. Jenkins, L. (2011). Using citizen science beyond teaching science content: A strategy for making science relevant to students’ lives. Cultural Studies of Science Education, 6(2), 501-508. https://doi.org/10.1007/s11422-010-9304-4
  26. Keller, J. M. (1987). Development and use of the ARCS model of motivational design. Journal of Instructional Development, 10(3), 2-10. https://doi.org/10.1007/BF02905967
  27. Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337. https://doi.org/10.1002/sce.3730770306
  28. Lin, H. S., Hong, Z. R. & Chen, Y. (2013). Exploring the development of college students situational interest in learning science. International Journal of Science Education, 35(13), 2152-2173. https://doi.org/10.1080/09500693.2013.818261
  29. Lyons, E. & Breakwell, G. M. (1994). Factors predicting environmental concern and indifference in 13-to 16-yearolds. Environment and Behavior, 26(2), 223-238. https://doi.org/10.1177/001391659402600205
  30. National Research Council(Ed.). (2000). Inquiry and the national science education standards : A guide for teaching and learning. Washington, DC: National Academy Press.
  31. OECD (2003). Definition and selection of competencies: Theoretical and conceptual foundations (DeSeCo). Paris, France: OECD publishing.
  32. Osborne, J., Erduran, S. & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
  33. Sampson, V., Enderle, P., Grooms, J. & Witte, S. (2013). Writing to learn and learning to write during the school science laboratory: Helping middle and high school students develop argumentative writing skills as they learn core ideas. Science Education, 97(5), 643-670. https://doi.org/10.1002/sce.21069
  34. Thijs, G. D. & Bosh, G. M.(1995). Cognitive effects of science experiments focusing on students’ preconceptions of force: A comparison of demonstrations and smallgroup practicals. Science Education, 17(3), 311-323.
  35. Trowbridge, L. W., Bybee, R. W., & Powell, J. C. (2000). Teaching secondary school science: Strategies for development scientific literacy(7th ed). Upper Saddle River, NJ: Merrill.
  36. Watson, J. R. (2000). The role of practical work. In M. Monk & J. Osborne(Eds.), Good practice in science teaching: What research has to say (pp. 57-71). Buckinghamm, UK: Open University Press.

Cited by

  1. 초등 5~6학년군 과학 교과서에 제시된 탐구 활동 유형 분석 vol.38, pp.4, 2019, https://doi.org/10.15267/keses.2019.38.4.453