DOI QR코드

DOI QR Code

Chlorella virus-mediated disruption of microalgal cell wall for biodiesel production

클로렐라 바이러스 매개 미세조류 세포벽 파쇄를 이용한 바이오 디젤 생산

  • Kim, Soojin (Department of New Drug Discovery & Development, Graduate School of New Drug Discovery & Development, Chungnam National University) ;
  • Kim, Yeon-Soo (Department of New Drug Discovery & Development, Graduate School of New Drug Discovery & Development, Chungnam National University)
  • 김수진 (충남대학교 신약전문대학원 신약개발학과) ;
  • 김연수 (충남대학교 신약전문대학원 신약개발학과)
  • Received : 2018.04.26
  • Accepted : 2018.05.29
  • Published : 2018.06.30

Abstract

The most energy-intensive processes in lipids extraction were the disruption of the cell wall of microalgae. Here, we tried to extract lipids through lysis using virus-infecting microalgae, to compare with those by the other two methods using microwave or ultrasonication. The lipids yield using viral infection was not significantly different from those using ultrasonication and microwave oven. This suggests that the same amount of lipids can be obtained with low energy and costs, as well as that microalgal lipids extraction by chlorella virus infection might provide the price competitiveness in biodiesel production even if it will be applied to mass production facilities.

미세조류의 세포벽을 파쇄하여 지질을 추출하는 과정은 에너지를 많이 소비하는 과정으로 알려져 있다. 본 연구에서는 바이러스 감염을 통한 미세조류의 세포벽 파쇄 및 지질 추출법의 효율을 현재 사용되고 있는 마이크로파와 초음파를 이용한 추출법의 효율과 비교하였다. 바이러스 감염을 이용한 지질 생산율은 초음파 및 마이크로파의 생산율과 유의미한 차이를 보이지 않았다. 이는 같은 양의 지질을 낮은 에너지와 비용으로 얻을 수 있을 뿐만 아니라, 클로렐라 바이러스 감염에 의한 미세조류 지질 추출법을 대량 생산 시설에 적용 시 바이오 디젤 생산 비용을 절감할 수 있음을 시사한다.

Keywords

References

  1. Bligh, E.G. and Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917. https://doi.org/10.1139/y59-099
  2. Brennan, L. and Owende, P. 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustsain. Energ. Rev. 14, 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  3. Bubeck, J.A. and Pfitzner, A.J. 2005. Isolation and characterization of a new type of chlorovirus that infects an endosymbiotic Chlorella strain of the heliozoon Acanthocystis turfacea. J. Gen. Virol. 86, 2871-2877. https://doi.org/10.1099/vir.0.81068-0
  4. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  5. Chisti, Y. 2013. Constraints to commercialization of algal fuels. J. Biotechnol. 167, 201-214. https://doi.org/10.1016/j.jbiotec.2013.07.020
  6. Chisti, Y. and Yan, J. 2011. Energy from algae: Current status and future trends. Appl. Energ. 88, 3277-3279. https://doi.org/10.1016/j.apenergy.2011.04.038
  7. Cho, H., Park, H., Kim, J., and Choi, T. 2002. Isolation and characterization of Chlorella viruses from freshwater sources in Korea. Mol. Cells 14, 168-176.
  8. Gunerken, E., D'Hondt, E., Eppink, M.H., Garcia-Gonzalez, L., Elst, K., and Wijffels, R.H. 2015. Cell disruption for microalgae biorefineries. Biotechnol. Adv. 33, 243-260. https://doi.org/10.1016/j.biotechadv.2015.01.008
  9. Kim, D.Y., Vijayan, D., Praveenkumar, R., Han, J.I., Lee, K., Park, J.Y., Chang, W.S., Lee, J.S., and Oh, Y.K. 2016. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour. Technol. 199, 300-310. https://doi.org/10.1016/j.biortech.2015.08.107
  10. Lee, J.Y., Yoo, C., Jun, S.Y., Ahn, C.Y., and Oh, H.M. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101 Suppl 1, S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058
  11. Michalak, I. and Chojnacka, K. 2014. Algal extracts: Technology and advances. Eng. Life Sci. 14, 581-591. https://doi.org/10.1002/elsc.201400139
  12. Piasecka, A., Krzeminska, I., and Tys, J. 2014. Physical methods of microalgal biomass pretreatment. Int. Agrophys. 28, 341-348. https://doi.org/10.2478/intag-2014-0024
  13. Rowe, J.M., Jeanniard, A., Gurnon, J.R., Xia, Y., Dunigan, D.D., Van Etten, J.L., and Blanc, G. 2014. Global analysis of Chlorella variabilis NC64A mRNA profiles during the early phase of Paramecium bursaria chlorella virus-1 infection. PLoS One 9, e90988. https://doi.org/10.1371/journal.pone.0090988
  14. Safi, C., Zebib, B., Merah, O., Pontalier, P.Y., and Vaca-Garcia, C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energ. Rev. 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007
  15. Skrdla, M., Burbank, D., Xia, Y., Meints, R., and Van Etten, J.L. 1984. Structural proteins and lipids in a virus PBCV-1 which replicates in a Chlorella-like alga. Virology 135, 308-315. https://doi.org/10.1016/0042-6822(84)90188-0
  16. Sun, L., Adams, B., Gurnon, J.R., Ye, Y., and Van Etten, J.L. 1999. Characterization of two chitinase genes and one chitosanase gene encoded by Chlorella virus PBCV-1. Virology 263, 376-387. https://doi.org/10.1006/viro.1999.9958
  17. Van Etten, J.L., Burbank, D., Kuczmarski, D., and Meints, R. 1983a. Virus infection of culturable Chlorella-like algae and development of a plaque assay. Science 25, 994-996.
  18. Van Etten, J.L., Burbank, D., Xia, Y., and Meints, R. 1983b. Growth cycle of a virus PBCV-1 that infects Chlorella-like algae. Virology 126, 117-125. https://doi.org/10.1016/0042-6822(83)90466-X
  19. Wang, B., Li, Y., Wu, N., and Lan, C.Q. 2008. $CO_2$ bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79, 707-718. https://doi.org/10.1007/s00253-008-1518-y
  20. Yamada, T., Onimatsu, H., and Van Etten, J.L. 2006. Chlorella viruses. Adv. Virus Res. 66, 293-336.