DOI QR코드

DOI QR Code

Complete genome sequence of Salmonella Thompson strain MFDS1004024 isolated from crab-stick

게맛살에서 분리된 Salmonella Thompson MFDS1004024의 유전체 염기서열 분석

  • Park, Sewook (Food Microbiology Division, Ministry of Food and Drug Safety) ;
  • Lee, Woojung (Food Microbiology Division, Ministry of Food and Drug Safety) ;
  • Yoo, Ran Hee (Food Microbiology Division, Ministry of Food and Drug Safety) ;
  • Joo, In-Sun (Food Microbiology Division, Ministry of Food and Drug Safety) ;
  • Kwak, Hyo Sun (Food Microbiology Division, Ministry of Food and Drug Safety) ;
  • Kim, Soon Han (Food Microbiology Division, Ministry of Food and Drug Safety)
  • 박세욱 (식품의약품안전처 식품의약품안전평가원 미생물과) ;
  • 이우정 (식품의약품안전처 식품의약품안전평가원 미생물과) ;
  • 유란희 (식품의약품안전처 식품의약품안전평가원 미생물과) ;
  • 주인선 (식품의약품안전처 식품의약품안전평가원 미생물과) ;
  • 곽효선 (식품의약품안전처 식품의약품안전평가원 미생물과) ;
  • 김순한 (식품의약품안전처 식품의약품안전평가원 미생물과)
  • Received : 2018.02.28
  • Accepted : 2018.05.03
  • Published : 2018.06.30

Abstract

Salmonella enterica subsp. enterica serovar Thompson strain MFDS1004024 was isolated from crab-stick in Korean food-borne outbreak in 2014. Here, we present the complete genome sequence of strain MFDS1004024 with a size of 4,742,942 bp and a mean G + C content of 52%. The genome included 4,373 coding sequences, and 22 ribosomal RNA and 84 transfer RNA genes. Also, we found that strain MFDS1004024 has some genes for Salmonella infection and beta-lactam resistance in its genome based on the result of genome analysis.

Salmonella enterica subsp. enterica serovar Thompson strain MFDS1004024 는 2014 년 한국에서 발생한 식중독 사고의 게맛살에서 분리되었다. 본 연구에서는 4,742,942 bp 의 크기와 약 52%의 G + C 함량을 가진 MFDS1004024 균주의 완전한 유전체 염기서열을 분석하였다. 이 유전체에는 4,373 개의 코딩 서열, 22 개의 리보솜 RNA 유전자 및 84 개의 전사 RNA 유전자가 존재한다. 또한 유전체 분석 결과를 통해 살모넬라 감염과 베타락탐계 항생제 내성에 관련이 있는 유전자를 발견하였다.

Keywords

References

  1. Aziz, R.K., Devoid, S., Disz, T., Edwards, R.A., Henry, C.S., Olsen, G.J., Olson, R., Overbeek, R., Parrello, B., Pusch, G.D., et al. 2012. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 7, e48053. https://doi.org/10.1371/journal.pone.0048053
  2. Bairoch, A. and Apweiler, R. 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45-48. https://doi.org/10.1093/nar/28.1.45
  3. Bland, C., Ramsey, T.L., Sabree, F., Lowe, M., Brown, K., Kyrpides, N.C., and Hugenholtz, P. 2007. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209. https://doi.org/10.1186/1471-2105-8-209
  4. Edgar, R.C. 2007. PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8, 18. https://doi.org/10.1186/1471-2105-8-18
  5. Edwards, P. and Galton, M. 1966. Salmonellosis. Adv. Vet. Sci. 11, 1-63.
  6. Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M.C., Rattei, T., Mende, D.R., Sunagawa, S., Kuhn, M., et al. 2015. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286-D293.
  7. Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119. https://doi.org/10.1186/1471-2105-11-119
  8. Kanehisa, M. and Goto, S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30. https://doi.org/10.1093/nar/28.1.27
  9. Larsen, M.V., Joensen, K.G., Zankari, E., Ahrenfeldt, J., Lukjancenko, O., Kaas, R.S., Roer, L., Leekitcharoenphon, P., Saputra, D., Cosentino, S., et al. 2017. The CGE tool box, pp. 65-90. In Applied genomics of foodborne pathogens. Springer.
  10. Lowe, T.M. and Eddy, S.R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964. https://doi.org/10.1093/nar/25.5.0955
  11. Nawrocki, E.P., Burge, S.W., Bateman, A., Daub, J., Eberhardt, R.Y., Eddy, S.R., Floden, E.W., Gardner, P.P., Jones, T.A., Tate, J., et al. 2014. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43, D130-D137.
  12. Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D206-D214. https://doi.org/10.1093/nar/gkt1226
  13. Schattner, P., Brooks, A.N., and Lowe, T.M. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686-W689. https://doi.org/10.1093/nar/gki366
  14. Wilson, K. 1987. Preparation of genomic DNA from bacteria. In Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (eds.), Current Protocols in Molecular Biology, Wiley & Sons, New York, 2.4.1-2.4.5.
  15. Zhang, S., Yin, Y., Jones, M.B., Zhang, Z., Kaiser, B.L.D., Dinsmore, B.A., Fitzgerald, C., Fields, P.I., and Deng, X. 2015. Salmonella serotype determination utilizing high-throughput genome sequencing data. J. Clin. Microbiol. 53, 1685-1692. https://doi.org/10.1128/JCM.00323-15