DOI QR코드

DOI QR Code

Electrochemical Performance of Li4Ti5O12 Particles Manufactured Using High Pressure Synthesis Process for Lithium Ion Battery

초고압 합성법으로 제조한 리튬이온전지 음극활물질 Li4Ti5O12의 전기화학적 특성

  • Ji, Sung Hwa (Department of Research & Development, ILSHINAUTOCLAVE Co.) ;
  • Jo, Wan Taek (Department of Research & Development, ILSHINAUTOCLAVE Co.) ;
  • Kim, Hyun Hyo (Department of Research & Development, ILSHINAUTOCLAVE Co.) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
  • 지성화 ((주)일신오토클레이브) ;
  • 조완택 ((주)일신오토클레이브) ;
  • 김현효 ((주)일신오토클레이브) ;
  • 김효진 (충남대학교 공과대학 신소재공학과)
  • Received : 2018.02.01
  • Accepted : 2018.05.24
  • Published : 2018.06.27

Abstract

Using a high pressure homonizer, we report on the electrochemical performance of $Li_4Ti_5O_{12}(LTO)$ particles manufactured as anode active material for lithium ion battery. High-pressure synthesis processing is performed under conditions in which the mole fraction of Li/Ti is 0.9, the synthesis pressure is 2,000 bar and the numbers of passings-through are 5, 7 and 10. The observed X-ray diffraction patterns show that pure LTO is manufactured when the number of passings-through is 10. It is found from scanning electron microscopy analysis that the average size of synthesized particles decreases as the number of passings-through increases. $LiCoO_2-based$ active cathode materials are used to fabricate several coin half/full cells and their battery characteristics such as lifetime, rate capability and charge transfer resistance are then estimated, revealing quite good electrochemical performance of the LTO particles as an effective anode active material for lithium secondary batteries.

Keywords

References

  1. T. Yuan, R. Cai, K. Wang, R. Ran, S. Liu, and Z. Shao, Ceram. Int., 35, 1757 (2009). https://doi.org/10.1016/j.ceramint.2008.10.010
  2. S. C. Hong, H. P. Hong, B. W. Cho, and B. K. Na, Korean J. Chem. Eng., 27, 91 (2010). https://doi.org/10.1007/s11814-009-0298-0
  3. S. H. Kim, H. Park, S. H. Jee, and H. S. Ahn, Korean J. Chem. Eng., 26, 485 (2009). https://doi.org/10.1007/s11814-009-0082-1
  4. R. J. Yi and G. D. Jenq, J. Power Sources, 198, 294 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.063
  5. S. Huang, Z. Wen, X. Zhu, and Z. Lin, J. Power Sources, 165, 408 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.010
  6. X. L. Yao, S. Xie, H. Q. Nian, and C. H. Chen, J. Alloys Compd., 465, 375 (2008). https://doi.org/10.1016/j.jallcom.2007.10.113
  7. L. Xing, Q. Meizhen, H. Yongjian, and Y. Zuolong, Electrochim. Acta, 55, 2978 (2010). https://doi.org/10.1016/j.electacta.2010.01.015
  8. N. Kiyoshi, N. Ryosuke, M. Tomoko, and M. Hiroshi, J. Power Sources, 117, 131 (2003). https://doi.org/10.1016/S0378-7753(03)00169-1
  9. N. Zhu, W. Liu, M. Q. Xue, Z. A. Xie, D. Zhao, M. N. Zhang, J. T. Chen, and T. B. Cao, Electrochim. Acta, 55, 5813 (2010). https://doi.org/10.1016/j.electacta.2010.05.029
  10. P. Guo, H. H. Song, and X. H. Chen, Electrochem. Commun., 11, 1320 (2009). https://doi.org/10.1016/j.elecom.2009.04.036
  11. S. H. Huang, Z. Y. Wen, X. J. Zhu, and Z. X. Lin, J. Electrochem. Soc., 152, A186 (2005). https://doi.org/10.1149/1.1833315
  12. S. Huang, Z. Wen, J. Zhang, Z. Gu, and X. Xu, Solid State Ionics, 177, 851 (2006). https://doi.org/10.1016/j.ssi.2006.01.050
  13. H. Yu, X. Zhang, A. F. Jalbout, X. Yan, X. Pan, and H. Xie, Electrochim. Acta, 53, 4200 (2008). https://doi.org/10.1016/j.electacta.2007.12.052
  14. G. Wang, J. Xu, M. Wen, R. Cai, R. Ran, and Z. Shao, Solid State Ionics, 179, 946 (2008). https://doi.org/10.1016/j.ssi.2008.03.032
  15. K. Burapapadh, H. Takeuchi, and P. Sriamornsak, Adv. Mater. Res., 506, 286 (2012). https://doi.org/10.4028/www.scientific.net/AMR.506.286