DOI QR코드

DOI QR Code

Near-Infrared and Blue Emissions of LuNbO4:Yb3+, Tm3+ Phosphors

LuNbO4:Yb3+, Tm3+ 형광체의 근적외선 및 청색 발광 특성

  • Im, Min Hyuk (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Young Jin (Department of Advanced Materials Engineering, Kyonggi University)
  • 임민혁 (경기대학교 신소재공학과) ;
  • 김영진 (경기대학교 신소재공학과)
  • Received : 2018.03.05
  • Accepted : 2018.06.01
  • Published : 2018.06.27

Abstract

$LuNbO_4:0.2Yb^{3+},xTm^{3+}$ powders were prepared using a solid-state reaction process. The effects of the amount of Tm on up-conversion(UC) and down-conversion(DC) luminescence properties are investigated. X-ray diffraction patterns confirm that $Yb^{3+}$ and $Tm^{3+}$ ions are successfully incorporated into Lu sites. Under 980 nm excitation, the UC spectra of the powders predominantly exhibit strong near-infrared emission bands that peak at 805 nm, whereas weak 480 nm emission bands are observed as well. The emission bands are assigned to the $^1G_4{\rightarrow}^3H_6$ (480 nm) and 3 $^3H_4{\rightarrow}^3H_6$ (805 nm) transitions of the $Tm^{3+}$ ions via an energy transfer from $Yb^{3+}$ to $Tm^{3+}$; two- and three-photon UC processes are responsible for the 805 and 480 nm emissions, respectively. The DC emission spectra exhibit blue emission ($^1D_2{\rightarrow}^3F_4$) of $Tm^{3+}$ at 458 nm. The amount of Tm affects the emission intensity with the strongest emissions at x = 0.007 and 0.02 for the UC and DC luminescence, respectively. The results demonstrate that $LuNbO_4:Yb^{3+},Tm^{3+}$ phosphors are suitable for bio-applications.

Keywords

References

  1. W. Ahn, J. Park, and Y. J. Kim, Sci. Adv. Mater., 8, 2022 (2016). https://doi.org/10.1166/sam.2016.2815
  2. J. Park, W. Ahn, and Y. J. Kim, Sci. Adv. Mater., 8, 2008 (2016). https://doi.org/10.1166/sam.2016.2809
  3. J. Chen, Y. Liu, M. H. Fang, and Z. H. Huang, Inorg. Chem., 53, 11396 (2014). https://doi.org/10.1021/ic501057r
  4. W. Lv, M. Jiao, Q. Zhao, B. Shao, W. LU, and H. You, Inorg. Chem., 53, 11007 (2014). https://doi.org/10.1021/ic501423p
  5. N. Choi, K. Park, B. Park, X. Zhang, J. Kim, P. Kung, and S. M. Kim, J. Lumin., 130, 560 (2010). https://doi.org/10.1016/j.jlumin.2009.10.031
  6. J. Park, W. Ahn, E. Y. Lee, and Y. J. Kim, Korean J. Mater. Res., 25, 475 (2015). https://doi.org/10.3740/MRSK.2015.25.9.475
  7. C. S. Lim, Korean J. Mater. Res., 26, 757 (2016). https://doi.org/10.3740/MRSK.2016.26.12.757
  8. Y. K. Kshetri, B. Joshi, T. -H. Kim, and S. W. Lee, Mater. Lett., 199, 147 (2017). https://doi.org/10.1016/j.matlet.2017.04.060
  9. J. Park and Y. J. Kim, Mater. Res. Bull., 96, 270 (2017). https://doi.org/10.1016/j.materresbull.2017.01.027
  10. J. S. Lee, and Y. J. Kim, Opt. Mater., 33, 1111 (2011). https://doi.org/10.1016/j.optmat.2010.10.011
  11. W. Ahn and Y. J. Kim, Opt. Mater. Express, 6, 1099 (2016). https://doi.org/10.1364/OME.6.001099
  12. S. H. Kwon and Y. J. Kim, ECS J. Solid State Sci. Technol., 2, R223 (2013).
  13. A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakasha, and S. B. Rai, Dalton Trans., 42, 1065 (2013). https://doi.org/10.1039/C2DT32054A
  14. W. Wang, W. Huang, Y. Ni, C. Lu, and Z. Xu, ACS Appl. Mater. Interfaces, 6, 340 (2014). https://doi.org/10.1021/am404389g
  15. G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, ACS Nano, 4, 3163 (2010). https://doi.org/10.1021/nn100457j
  16. H. Qiu, C. Yang, W. Shao, J. Damasco, X. Wang, H. Agren, P. N. Prasad, and G. Chen, Nanomaterials, 4, 55 (2014). https://doi.org/10.3390/nano4010055
  17. J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, J. Am. Chem. Soc., 128, 7444 (2006). https://doi.org/10.1021/ja061848b
  18. S. Gai, P. Yang, D. Wang, C. Li, N. Niu, F. He, and X. Li, CrystEngComm, 13, 5480 (2011). https://doi.org/10.1039/c1ce05455d
  19. F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, and M. Bettinelli, J. Phys. Chem. B, 109, 17400 (2005). https://doi.org/10.1021/jp052192w
  20. E. W. Barrera, M. C. Pujol, F. Diaz, S. B. Choi, F. Rotermund, K. H. Park, M. S. Jeong, and C. Cascales, Nanotechnology, 22, 075205 (2011). https://doi.org/10.1088/0957-4484/22/7/075205
  21. L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, and F. Li, Anal. Chem., 81, 8687 (2009). https://doi.org/10.1021/ac901960d
  22. R. Naccache, E. M. Rodriguez, N. Bogdan, F. S. Rodriguez, M. D. Cruz, A. J. Fuente, F. Vetrone, D. Jaque, J. G. Sole, and J. A. Capobianco, Cancers, 4, 1067 (2012). https://doi.org/10.3390/cancers4041067
  23. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, Nano Lett., 8, 3834 (2008). https://doi.org/10.1021/nl802223f
  24. R. Kumar, M. Nyk, T. Y. Ohulchanskyy, C. A. Falsk, and P. N. Prasad, Adv. Funct. Mater., 19, 853 (2009). https://doi.org/10.1002/adfm.200800765
  25. J. M. Jehng and I. E. Wachs, Chem. Mater., 3, 100 (1991). https://doi.org/10.1021/cm00013a025
  26. M. Pollnau, D. R. Gamelin, S. R. Lüthi, and H. U. Güdel, Phys. Rev. B, 61, 3337 (2000). https://doi.org/10.1103/PhysRevB.61.3337
  27. A. H. Buth and G. Blasse, Phys. Status Solidi A, 64, 669 (1981). https://doi.org/10.1002/pssa.2210640232