DOI QR코드

DOI QR Code

Influence of Solid Loading on the Granulation of 3Y-TZP Powder by Two-Fluid Spray Drying

  • Jeong, Hyeongdo (Department of Materials Science and Engineering, Chosun University) ;
  • Lee, Jong Kook (Department of Materials Science and Engineering, Chosun University)
  • Received : 2018.03.06
  • Accepted : 2018.05.29
  • Published : 2018.07.31

Abstract

The influence of solid loading in the slurry composition on the morphology of 3Y-TZP granules fabricated by two-fluid spray drying was investigated for solid contents varying between 30 wt% and 50 wt%. The resulting 3Y-TZP granules showed a sphere-like shape with diameters of $40-70{\mu}m$. However, a donut-like shape and a few cracks were observed on the granule surfaces fabricated using the slurry with 50 wt% solid content. The green density after cold isostatic pressing at 200 MPa was $2.1-2.2g/cm^3$, and a homogeneous fracture surface was obtained by complete destruction of granules. After sintering at $1500^{\circ}C$ for 2 h, all specimens had relative densities of 96.2 - 98.3%. With increasing solid content, the relative density decreased from 98.3% to 96.2%, but the grain size increased from $0.3{\mu}m$ to $0.6{\mu}m$. Highly sinterable zirconia granule powder could be obtained by controlling the slurry composition.

Keywords

References

  1. I. Denry and J. A. Holloway, "Ceramics for Dental Applications: A Review," Materials, 3 [1] 351-68 (2013). https://doi.org/10.3390/ma3010351
  2. S. P. Passos, B. Linke, P. W. Major, and J. A. Nychka, "The Effect of Air-Abrasion and Heat Treatment on the Fracture Behavior of Y-TZP," Dent. Mater., 31 [9] 1011-21 (2015). https://doi.org/10.1016/j.dental.2015.05.008
  3. M. V. Swain, "Impact of Oral Fluids on Dental Ceramics: What is the Clinical Relevance?," Dent. Mater., 30 [1] 33-42 (2014). https://doi.org/10.1016/j.dental.2013.08.199
  4. H. T. Kim, J. H. Yang, J. B. Lee, and S. H. Kim, "The Effect of Low Temperature Aging on the Mechanical Property & Phase Stability of Y-TZP Ceramics," J. Adv. Prosthodont., 1 [3] 113-17 (2009). https://doi.org/10.4047/jap.2009.1.3.113
  5. C. Piconi and G. Maccauro, "Zirconia as a Ceramic Biomaterial," Biomaterials, 20 [1] 1-25 (1999). https://doi.org/10.1016/S0142-9612(98)00010-6
  6. X. Guo, "On the Degradation of Zirconia Ceramics during Low-Temperature Annealing in Water or Water Vapor," J. Phys. Chem. Solids, 60 [4] 539-46 (1999). https://doi.org/10.1016/S0022-3697(98)00301-1
  7. B. D. Flinn, A. J. Raigrodski, A. Singh, and L. A. Mancl, "Effect of Hydrothermal Degradation on Three Types of Zirconias for Dental Application," J. Prosthet. Dent., 112 [6] 1377-84 (2014). https://doi.org/10.1016/j.prosdent.2014.07.015
  8. I. Denry and J. R. Kelly, "State of the Art of Zirconia for Dental Applications," Dent. Mater., 24 [3] 299-307 (2008). https://doi.org/10.1016/j.dental.2007.05.007
  9. G. Bertrand, C. Filiatre, and C. Coddet, "Spray-Dried Ceramic Powders: A Quantitative Correlation between Slurry Characteristics and Shapes of the Granules," Chem. Eng. Sci., 60 [1] 95-102 (2005). https://doi.org/10.1016/j.ces.2004.04.042
  10. M. Keuper, C. Berthold, and K. G. Nickel, "Long-Time Aging in 3 mol.% Yttria-Stabilized Tetragonal Zirconia Polycrystals at Human Body Temperature," Acta Biomater., 10 [2] 951-59 (2014). https://doi.org/10.1016/j.actbio.2013.09.033
  11. J. S. Choi and Y. M. Kong, "A Case Study on Sintering Characteristics of Yttria Stabilized Zirconia Powder Prepared by Two-Fluid Spray Drying," J. Korean Ceram. Soc., 53 [3] 332-37 (2016). https://doi.org/10.4191/kcers.2016.53.3.332
  12. S. J. Lukasiewicz, "Spray-Drying Ceramic Powders," J. Am. Ceram. Soc., 72 [4] 617-24 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06184.x
  13. Y. N. Ko, S. M. Lee, J. H. Lee, J. K. Lee, and Y. C. Kang, "Sintering Characteristics of Nano-Sized Yttria-Stabilized Zirconia Powders Prepared by Spray Pyrolysis," J. Ceram. Proc. Res., 13 [4] 405-8 (2012).
  14. T. K. Gupta, F. F. Lange, and J. H. Bechtold, "Effect of Stress-Induced Phase Transformation on the Properties of Polycrystalline Zirconia Containing Metastable Tetragonal Phase," J. Mater. Sci., 13 [7] 1464-70 (1978). https://doi.org/10.1007/BF00553200
  15. F. F. Lange, H. Shubert, and M. Ruhle," Effects of Attrition Milling and Post-Sintering Heat Treatment on Fabrication, Microstructure and Properties of Transformation Toughened $ZrO_2$," J. Mater. Sci., 21 [3] 768-74 (1986). https://doi.org/10.1007/BF01117352
  16. R. C. Garvie, "The Occurrence of Metastable Tetragonal Zirconia as a Crystalite Size Effect," J. Phys. Chem. Soc., 69 [4] 1238-43 (1965). https://doi.org/10.1021/j100888a024
  17. W. J. Walker and J. S. Reed, "Influence of Slurry Parameters on the Characteristics of Spray-Dried Granules," J. Am. Ceram. Soc., 82 [7] 1711-19 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01990.x
  18. J. A. Munoz-Tabares, E. Jimenez-Pique, J. Reyes-Gasga, and M. Anglada, "Microstructural Changes in Ground 3Y-TZP and Their Effect on Mechanical Properties," Acta Mater., 59 [17] 6670-83 (2011). https://doi.org/10.1016/j.actamat.2011.07.024
  19. V. Naglieri, D. Gutknecht, V. Garnier, P. Palmero, J. Chevalier, and L. Montanaro., "Optimized Slurries for Spray Drying: Different Approaches to Obtain Homogeneous and Deformable Alumina-Zirconia Granules," Materials, 6 [11] 5382-97 (2013). https://doi.org/10.3390/ma6115382
  20. B. P. C. Raghupathy and J. G. P. Binner, "Spray Granulation of Nanometric Zirconia Particles," J. Am. Ceram. Soc., 94 [1] 42-8 (2011). https://doi.org/10.1111/j.1551-2916.2010.04019.x
  21. L. Zhang, Y. Li, X. Li, H. Yang, X. Qiao, T. Zhou, Z. Wang, J. Zhang, and D. Tang, "Characterization of Spray Granulated Nd: YAG Particles for Transparent Ceramics," J. Alloys Compd., 639 244-51 (2015). https://doi.org/10.1016/j.jallcom.2015.02.229
  22. J. H. Kim and J. K. Lee, "Effect of Drying Method on the Synthesis of Yttria-Stabilized Zirconia Powders by Co-Precipitation," J. Nanosci. Nanotech., 16 [11] 11457-59 (2016). https://doi.org/10.1166/jnn.2016.13529
  23. A. Stunda-Zujeva, Z. Irbe, and L. Berzina-Cimdina, "Controlling the Morphology of Ceramic and Composite Powders Obtained via Spray Drying - A Review," Ceram. Int., 43 [15] 11543-51 (2017). https://doi.org/10.1016/j.ceramint.2017.05.023
  24. D. J. Kim and J. Y. Jung, "Granule Performance of Zirconia/Alumina Composite Powders Spray-Dried Using Polyvinyl Pyrrolidone Binder," J. Eur. Ceram. Soc., 27 [10] 3177-82 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.01.013
  25. M. I. Zainuddin, S. Tanaka, R. Furushima, and K. Uematsu, "Correlation between Slurry Properties and Structures and Properties of Granules," J. Eur. Ceram. Soc., 30 [16] 3291-96 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.07.004
  26. K. Somton, K. Dateraksa, D. Atong, and R. Mccuiston, "The Effect of Granule Morphology and Composition on the Compaction Behavior and Mechanical Properties of 92% Alumina Spray Dried Granules," J. Met., Mater. Miner., 22 [2] 41-7 (2012).
  27. W. J. Walker, J. S. Reed, and S. K. Verma, "Influence of Granule Character on Strength and Weibull Modulus of Sintered Alumina," J. Am. Ceram. Soc., 82 [1] 50-6 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01722.x
  28. H. D. Jeong, J. W. Shin, and J. K. Lee, "Characterization of Commercial 3Y-TZP Nanopowders and Their Sintered Properties," J. Nanosci. Nanotechnol., 17 [10] 7584-88 (2017). https://doi.org/10.1166/jnn.2017.14775
  29. W. F. M. Groot Zevert, A. J. A. Winnubst, G. S. A. M. Theunissen, and A. J. Burggraaf, "Powder Preparation and Compaction Behaviour of Fine-Grained Y-TZP," J. Mater. Sci., 25 [8] 3449-55 (1989). https://doi.org/10.1007/BF00575369
  30. P. M. Souto, R. R. Menezes, and R. H. G. A. Kiminami, "Sintering of Commercial Mulite Powder: Effect of MgO Dopant," J. Mater. Process. Technol., 209 [1] 548-53 (2009). https://doi.org/10.1016/j.jmatprotec.2008.02.029