DOI QR코드

DOI QR Code

WEIGHTED GDMP INVERSE OF OPERATORS BETWEEN HILBERT SPACES

  • Mosic, Dijana (Faculty of Sciences and Mathematics University of Nis)
  • Received : 2017.08.30
  • Accepted : 2018.03.27
  • Published : 2018.07.31

Abstract

We introduce new generalized inverses (named the WgDMP inverse and dual WgDMP inverse) for a bounded linear operator between two Hilbert spaces, using its Wg-Drazin inverse and its Moore-Penrose inverse. Some new properties of WgDMP inverse and dual WgDMP inverse are obtained and some known results are generalized.

Acknowledgement

Supported by : Ministry of Science, Republic of Serbia

References

  1. O. M. Baksalary and G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra 58 (2010), no. 5-6, 681-697. https://doi.org/10.1080/03081080902778222
  2. N. Castro Gonzalez and J. J. Koliha, New additive results for the g-Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 6, 1085-1097. https://doi.org/10.1017/S0308210500003632
  3. R. E. Cline and T. N. E. Greville, A Drazin inverse for rectangular matrices, Linear Algebra Appl. 29 (1980), 53-62. https://doi.org/10.1016/0024-3795(80)90230-X
  4. A. Dajic and J. J. Koliha, The weighted g-Drazin inverse for operators, J. Aust. Math. Soc. 82 (2007), no. 2, 163-181. https://doi.org/10.1017/S1446788700016013
  5. M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514. https://doi.org/10.1080/00029890.1958.11991949
  6. A. Hernandez, M. Lattanzi, and N. Thome, Weighted binary relations involving the Drazin inverse, Appl. Math. Comput. 253 (2015), 215-223.
  7. A. Hernandez, M. Lattanzi, and N. Thome, On some new pre-orders defined by weighted Drazin inverses, Appl. Math. Comput. 282 (2016), 108-116.
  8. J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), no. 3, 367-381. https://doi.org/10.1017/S0017089500031803
  9. S. B. Malik and N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput. 226 (2014), 575-580.
  10. L. Meng, The DMP inverse for rectangular matrices, Filomat 31 (2017), no. 19, 6015- 6019. https://doi.org/10.2298/FIL1719015M
  11. D. Mosic and D.S. Djordjevic, The gDMP inverse of Hilbert space operators, Journal of Spectral Theory 8 (2018), no. 2, 555-573. https://doi.org/10.4171/JST/207
  12. A. Yu and C. Deng, Characterizations of DMP inverse in a Hilbert space, Calcolo 53 (2016), no. 3, 331-341. https://doi.org/10.1007/s10092-015-0151-2