DOI QR코드

DOI QR Code

Gas Generation by Burning Test of Cypress Specimens Treated with Boron Compounds

붕소 화합물로 처리된 편백목재 시험편의 연소시험에 의한 가스 발생

  • Jin, Eui (Fire Prevention Research Center, Kangwon National University) ;
  • Chung, Yeong-Jin (Dept. of Fire Protection Engineering, Kangwon National University)
  • 진의 (강원대학교 소방방재연구센터) ;
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2018.03.26
  • Accepted : 2018.04.15
  • Published : 2018.08.10

Abstract

Cypress woods treated individually with boric acid (BA4), ammonium pentaborate (APB4), or BA4/APB4 additives were examined for combustion gases. Each of the specimens was painted with a 4 wt% solution of boron compounds three times. Dried at room temperature, the combustion gas was analyzed using a cone calorimeter (ISO 5660-1). Consequently, the second maximum oxygen consumption rate of the specimen treated with boron compounds was 0.1067 to 0.1246 g/s, which was 5.3 to 18.9%, respectively lower than that of the blank specimen. The specific extinction area of specimens treated with BA4 and APB4 was also 2.0 to 19.0% lower, respectively. However, treated with BA4/APB4 showed 21.2% higher than that of the blank specimen. The maximum carbon monoxide concentration of the specimens with boron compounds was reduced by 0 to 25%. It was estimated to be 1.6 to 2.2 times higher than the permissible exposure limits by Occupational Safety and Health Administration (OSHA), indicating a fatal toxicity. The boron compounds were effective in reducing carbon monoxide, but didn't meet the OSHA limit. The boron compound inhibited the burning behavior of the cypress wood, which suppressed the second maximum oxygen consumption rate by 5.3 to 18.9% and the maximum carbon monoxide generation by 0 to 25%.

붕산, 5붕산암모늄, 붕산/5붕산암모늄 첨가제로 처리한 편백목재 시험편의 연소가스 발생에 관한 시험을 하였다. 4 wt%의 붕소 화합물 수용액으로 각각 편백목재 시험편에 붓으로 3회 칠하였다. 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소가스를 분석하였다. 그 결과, 붕소 화합물로 처리한 시험편의 두 번째_최대산소 소모율은 0.1067~0.1246 g/s로서 공시험편보다 5.3~18.9% 감소했다. 붕산, 5붕산암모늄으로 처리한 시험편의 비소화면적은 2.0~19.0% 감소하였다. 그러나, 붕산/5붕산암모늄으로 처리된 경우 비감쇠면적이 공시험편보다 21.2% 증가하였다. 붕소 화합물로 처리한 시험편의 최대일산화탄소 농도는 0~25% 감소되었다. 이것은 직업안전위생관리국(Occupational Safety and Health Administration, OSHA) 허용기준의 1.6~2.2배의 치명적인 독성을 발생하는 것으로 측정되었다. 붕소화합물은 일산화탄소 감소에는 효과적이었으나 OSHA의 허용기준에는 미치지 못하였다. 붕소화합물은 편백나무의 연소성을 두 번째_최대산소 소모율에 대하여 5.3~18.9%, 최대일산화탄소 발생에 대하여 0~25% 억제하였다.

Keywords

References

  1. R. Kozlowski and M. Hewig, Progress in flame retardancy and flammability testing, in: 1st Int Conf. Progress in Flame Retardancy and Flammability Testing, Institute of Natural Fibres, Pozman, Poland (1995).
  2. R. Stevens, S. E. Daan, R. Bezemer, and A. Kranenbarg, The strucure- activity relationship of retardant phosphorus compounds in wood, Polym. Degrad. Stab., 91, 832-841 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.06.014
  3. Y. J. Chung, Y. H. Kim, and S. B. Kim, Flame retardant properties of polyurethane produced by the addition of phosphorous containing polyurethane oligomers (II), J. Ind. Chem. Eng., 15, 888-893 (2009). https://doi.org/10.1016/j.jiec.2009.09.018
  4. Y. J. Chung, Flame retardancy of veneers treated by ammonium salts, J. Korean Ind. Eng. Chem., 18, 251-255 (2007).
  5. P. Zhao, C. Guo, and L. Li, Exploring the effect of melamine pyrophosphate and aluminum hypophosphite on fame retardant wood flour/polypropylene composites, Constr. Build. Mater., 170, 193-199 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.074
  6. J. Jiang, J. Z. Li, J. Hu, and D. Fan, Effect of nitrogen phosphorus flame retardants on thermal degradation of wood, Constr. Build. Mater., 24, 2633-2637 (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.064
  7. T. Jiang, X. Feng, Q. Wang, Z. Xiao, F. Wang, and Y. Xie, Fire performance of oak modified with N-methylol resin and methylolated guanylurea phosphate/Boric acid-based fire retardant, Constr. Build. Mater., 72, 1-6 (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.004
  8. A. M. Pereyra and C. A. Giudic, Flame-retardant impregnants for woods based on alkaline silicates, Fire Saf. J., 44, 497-503 (2009). https://doi.org/10.1016/j.firesaf.2008.10.004
  9. R. H. White and M. A. Dietenberger, Fire safety. in: Wood Handbook: Wood as an Engineering Material, Ch.17, USDA, Forest Product Laboratory, Madison, WI, USA (1999).
  10. A. Ernst and J. D. Zibrak, Carbon monoxide poisoning, N. Engl. J. Med., 339, 1603-1608 (1998). https://doi.org/10.1056/NEJM199811263392206
  11. R Von Burg, Toxicology update, J. Appl. Toxicol., 19, 379-386 USA (1999). https://doi.org/10.1002/(SICI)1099-1263(199909/10)19:5<379::AID-JAT563>3.0.CO;2-8
  12. B. G. King, High Concentration-short time exposures and toxicity, J. Ind. Hyg. Toxicol., 31, 365-375 (1949).
  13. U. C. Luft, Aviation physiology: the effects of altitude in: Handbook of Physiology, 1099-1145, American Physiology Society, Washington DC, USA (1965).
  14. D. A. Purser, A bioassay model for testing the incapacitating effects of exposure to combustion product atmospheres using cynomolgus monkeys, J. Fire Sci., 2, 20-26 (1984). https://doi.org/10.1177/073490418400200104
  15. V. Babrauskas, A versatile bench-scale tool for the evaluation of fire properties. In: S. J. Grayson and D. A. Smith (eds.), New Technology to Reduce Fire Losses and Costs, pp. 78-87, Elsevier Applied Science Publisher, London, UK (1986).
  16. M. M. Hirschler, Fire performance of organic polymers, thermal decomposition and chemical composition, ACS Symp. Ser., 797, 293-306 (2001).
  17. V. Babrauskas, Ignition of wood: A review of the state of the art. In: Interflam 2001, 71-88, Interscience Communications Ltd., London, UK (2001).
  18. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability, In: E.A.Turei (ed.), Thermal Characterization of Polymeric Materials, Ch. 8, Academic Press, New York, USA (1981).
  19. C. H. Lee, C. W. Lee, J. W. Kim, C. K. Suh, and K. M. Kim, Organic phosphorus-nitrogen compounds, manufacturing method and compositions of flame retardants containing organic phosphorus-nitrogen compounds, Korean Patent 2011-0034978 (2011).
  20. M. Jimenez, S. Duquesnsne, and S. Bourbigot, Intumescent fire protective coating: Toward a better understanding their mechanism of action, Thermochim. Acta, 449, 16-26 (2006). https://doi.org/10.1016/j.tca.2006.07.008
  21. Y. J. Chung and E. Jin, Cumbustion chracteristics of cypress specimens painted with solutions of boron compunds, Fire Sci. Eng., 32, 7-12 (2018).
  22. T. Balakrishnan, G. Bhagannaryana, and K. Ramamurthi, Growth, structural, optical, thermal and mechanical properties of ammonium pentaborate single crystal, Spectrochim. Acta A, 71, 578-583 (2008). https://doi.org/10.1016/j.saa.2008.01.026
  23. ISO 5660-1, Reaction-to-fire tests-Heat release, smoke production and mass loss rate. Part 1: Heat release rate(cone calorimeter method) and smoke production rate (dynamic measurement), Geneva, Switzerland (2015).
  24. W. T. Simpson, Drying and control of moisture content and dimensional changes. In: Wood Handbook-Wood as an Engineering Material, Ch. 12, USDA Forest Product Laboratory, Madison, WI, USA (1987).
  25. V. Babrauskas, The SFPE Handbook of Fire Protection Engineering, 4th Ed., National Fire Protection Association, MA, USA (2008).
  26. O. Grexa, E. Horvathova, O. Besinova, and P. Lehocky, Flame retardant treated plywood, Polym. Degrad. Stab., 64, 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  27. Q. Wang, J. Li, and J. E. Winady, Chemical mechanism of fire retardance of boric acid on wood, Wood Sci. Technol., 38, 375-389 (2004).
  28. N. K. Saxena and D. R. Gupta, Development and evaluation of fire retardant coatings, Fire Technol., 11, 329-341 (1990).
  29. M. Hagen, J. Hereid, M. A. Delichtsios, J. Zhang, and D. Bakirtzis, Flammability assesment of fire-retarded nordic spruce wood using thermogravimetric analyses and con calorimetry, Fire Saf. J., 44, 1053-1069 (2009). https://doi.org/10.1016/j.firesaf.2009.07.004
  30. G. Kimmerle, Aspects and methodology for the evaluation of toxicological parameters during fire exposure, J. Combust. Toxicol., 1, 4-51 (1974).
  31. A. P. Mourituz, Z. Mathys, and A. G. Gibson, Heat release of polymer composites in fire, Composites A, 38, 1040-1054 (2005).
  32. OHSA, Carbon Monoxide, OSHA Fact Sheet, United States National Institute for Occupational Safety and Health, September 14, USA (2009).
  33. OHSA, Carbon Dioxide, Toxicological Review of Selected Chemicals, Final Rule on Air Comments Project, OHSA's Comments, Jannuary 19, USA (1989).
  34. MSHA, Carbon Monoxide, MSHA's Occupational Illness and Injury Prevention Program Topic, U.S. Department of Labor, USA (2015).
  35. M. J. Spearpoint and G. J. Quintiere, Predicting the burning of wood using an integral model, Combust. Flame, 123, 308-325 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0