DOI QR코드

DOI QR Code

LED 램프의 광합성유효광양자속이 오이접목묘의 엽록소형광, 엽록소함량, 활착 및 생장에 미치는 영향

Chlorophyll Fluorescence, Chlorophyll Content, Graft-taking, and Growth of Grafted Cucumber Seedlings Affected by Photosynthetic Photon Flux of LED Lamps

  • 김형곤 (전북대학교 농업기계ICT융합연구소) ;
  • 이재수 (국립농업과학원 농업공학부 스마트팜개발과) ;
  • 김용현 (전북대학교 농업기계ICT융합연구소)
  • Kim, Hyeong Gon (Institute for Agricultural Machinery & ICT Convergence, Chonbuk National University) ;
  • Lee, Jae Su (Farming Automation Division, Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Yong Hyeon (Institute for Agricultural Machinery & ICT Convergence, Chonbuk National University)
  • 투고 : 2018.05.16
  • 심사 : 2018.07.05
  • 발행 : 2018.07.30

초록

본 연구는 대목과 접수의 결합 단계에서 나타나는 스트레스를 오이접목묘의 엽록소형광반응, 엽록소함량, 활착 및 생장 특성 측면에서 분석하고자 수행되었다. 이를 위해서 활착실 내의 광합성유효광양자속은 25, 50, 100, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$의 4수준으로 설정되었고, 기온, 상대습도 및 LED 램프의 광주기는 각각 $25^{\circ}C$, 90%, $16h{\cdot}d^{-1}$이었다. 본 연구에서 얻어진 결과를 요약하면 다음과 같다. 대목의 최대양자수율은 0.84-0.85로서 광량에 따른 분명한 차이가 나타나지 않았다. 한편, 접수의 최대양자수율은 접목 후 2일째에 0.81-0.82로 낮게 나타났으나, 3일째부터 광량이 높을수록 접수의 최대양자수율이 증가하였다. 활착 후 4일째에 측정된 접수의 엽록소함량은 광량이 증가할수록 높게 나타났다. 오이접목묘의 활착율은 광량이 $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 이하일 때 90-95% 정도로 높게 나타났으나, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$의 처리구에서는 80% 정도로 저하되었다. 광주기에 따라 다르나, 오이접목묘의 활착에 적합한 한계 광량은 플러그 트레이 표면에 조사된 광량을 기준으로 $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 정도이다. 본 연구에서 처리된 광강도 하에서 활착된 오이접목묘의 발근에 최소 2일이 소요되었고, 이 기간에 접수의 최대양자수율은 최저치로 나타났다. 활착 단계에서 조사되는 광량에 따라 대목과 접수의 변이형광과 최대양자수율이 다르게 나타났다. 그러므로 접목묘의 활착 단계에서 나타나는 스트레스를 줄이면서 대목의 발근을 촉진하고, 접수의 최대 양자수율이 급격하게 저하되는 것을 방지하려면 광 및 습도 등의 물리적 환경이 정확하게 제어되어야 한다. 향후 접목묘의 활착 단계에서 대목의 발근, 통도조직의 결합 상태, 수분의 이동에 따른 엽록소함량 변화를 정량적으로 구명할 필요가 있다.

Chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings as affected by photosynthetic photon flux (PPF) of LED lamps were analyzed in this study. Four PPF levels, namely 25, 50, 100, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ were provided to investigate the effect of light intensity on the chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings. Air temperature, relative humidity, and photoperiod for graft-taking were maintained at $25^{\circ}C$, 90%, $16h{\cdot}d^{-1}$, respectively. Maximum quantum yield (Fv/Fm) of rootstock as affected by PPF was found to be 0.84-0.85 and there was no significant change in Fv/Fm. Even though Fv/Fm of scion measured at 2 days after grafting was lowered to 0.81-0.82, after then it gradually increased with increasing PPF. At 4 days after grafting, the chlorophyll content extracted from scion increased with increasing PPF. Graft-taking ratio of grafted cucumber seedlings was 90-95% as PPF was ranged from $25{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ to $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. However, the graft-taking ratio of grafted seedlings healed under PPF of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was decreased to 80%. Maximum PPF measured required for smooth joining of rootstock and scion was assumed to be $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. At healing stage of grafted cucumber seedlings, Fv/Fm of scion decreased and at least two days after grafting were required for rooting of grafted seedlings. Chlorophyll fluorescence response of rootstock and scion was linked to light irradiation. Therefore, it was concluded that physical environment including light and humidity during healing process of grafted seedlings should be controlled more precisely to facilitate root formation and to prevent scion from lowering Fv/Fm. Further studies are required to investigate the effects of root development and joining of vascular bundles of grafted seedlings on the chlorophyll content of scion.

키워드

참고문헌

  1. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 24:1-15. doi:10.1104/pp.24.1.1
  2. Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55:1607-1621. doi:10.1093/jxb/erh196
  3. Buttery, B.R. and R.L Buzzell. 1977. The relationship between chlorophyll content and rate of photosynthesis in soybeans. Can. J. Plant Sci. 57: l-5. doi:10.4141/cjps77-001
  4. Han, S.H, D.H. Kim, G.N. Kim, and J.K. Byun. 2011. Changes of leaf characteristics, pigment content and photosynthesis of Forsythia saxatilis under two different light intensities. J. Kor. For. Soc. 100:609-615. (in Korean)
  5. Hazrati, S., Z. Tahmasebi-Sarvestani, S.A.M. Modarres-Sanavy, A. Mokhtassi-Bidgoli, S. Nicola. 2016. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiol. Biochem. 106:141-148. doi:10.1016/j.plaphy.2016.04.046
  6. Hiscox, J.D. and G.F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 571332-1334. doi:10.1139/b79-163
  7. Jang, Y., E. Goto, Y. Ishigami, B. Mun, and C. Chun. 2011. Effects of light intensity and relative humidity on photosynthetic rate, growth and graft-take of grafted cucumber seedlings during healing and acclimatization. Hortic. Environ. Biotechnol. 52:331-338. doi:10.1007/s13580-011-0009-8
  8. Johnson, G.N., A.J. Young, J.D. Scholes, and P. Horton. 1993. The dissipation of excess excitation energy in British plant species. Plant, Cell & Environ. 16:673-679. doi:10.1111/j.1365-3040.1993.tb00485.x
  9. Kim, S.K., H.J. Kim, K.J. Choi, J.H. Lee, G.C. Chung, and S.J. Chung. 2001. Effect of light intensity, temperature and leaf chlorophyll content on photosynthesis and respiration of colored calla (Zantedeschia spp.). Proc. Kor. J. Hortic. Sci. Technol. 19:98. (in Korean)
  10. Kim, H.G. 2014. Chlorophyll fluorescence, graft-take and growth characteristics of cucumber (Cucumis sativus L.) grafted seedlings as affected by light quality and light intensity of LED lamps. MS Thesis. Chonbuk National University. (in Korean)
  11. Kim, Y.H. 2000. Design of a prototype system for graft-taking enhancement of grafted seedlings using artificial lighting-Effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system- J. Kor. Soc. Agric. Mach. 25:213-220. (in Korean)
  12. Kim, Y.H. and C.S. Kim. 2000. Three dimensional visualization for vessel structure of grafted seedlings. Proc. Kor. Soc. Agric. Mach. 5:492-498. (in Korean)
  13. Kim, Y.H. and Y.S. Park. 2001. Evapotranspiration rate of grafted seedlings affected by relative humidity and photosynthetic photon flux under artificial lighting. J. Kor. Soc. Agric. Mach. 26:379-384. (in Korean)
  14. Kooten, O. and J.F. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res. 25:147-50. doi:10.1007/BF00033156
  15. Koscielniak. J, W. Filek, and J. Biesaga-Koscielniak. 2006. The effect of drought stress on chlorophyll fluorescence in Lolium-Festuca hybrids. Acta Physiol. Plant. 28:149-158. doi:10.1007/s11738-006-0041-y
  16. Krause G.H. and F. Weis. 1991. Chlorophyll Fluorescence and Photosynthesis: The Basics. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:313-349. doi:10.1146/annurev
  17. Kycko, M., B. Zagajewski, S. Lavender, E. Romanowska, and M. Zwijacz-Kozica. 2018. The impact of tourist traffic on the condition and cell structures of Alpine swards. Remote Sens. 10:220-241. doi:10.3390/rs10020220
  18. Lang, M., H.K. Lichtenthaler, M. Sowinska, F. Heisel, and J.A. Miehe. 1996. Fluorescence imaging of water and temperature stress in plant leaves. J. Plant Physiol. 148:613-621. doi:10.1016/S0176-1617(96)80082-4
  19. Lee, J.M., C. Kubota, S.J. Tsao, Z. Bie, P.H. Echevarria, L. Morra, and M. Oda. 2010. Current status of vegetable grafting diffusion, grafting techniques, automation. Sci. Hortic. 127:93-105. doi:10.1016/j.scienta.2010.08.003
  20. Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51:659-668. doi:10.1093/jexbot/51.345.659
  21. Moradi, F. and A.M. Ismail. 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Bot. 99:1161-1173. doi:10.1093/aob/mcm052
  22. Schwarz, D., Y. Rouphaelb, G. Collac, and J.H. Venemad. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses. Scientia Horticulturae 127:162-171. doi:10.1016/j.scienta.2010.09.016
  23. Willits, D.H. and M.M. Peet. 1999. Using chlorophyll fluorescence to model leaf photosynthesis in greenhouse pepper and tomato. Acta. Hort. 507:311-315. doi:10.17660/Acta-Hortic.1999.507.36