DOI QR코드

DOI QR Code

Impact of Tropospheric Modeling Schemes into Accuracy of Estimated Ellipsoidal Heights by GPS Baseline Processing: Experimental Analysis and Results

GPS 기선해석에 의한 타원체고 추정에서 대류권 오차 보정기법이 정확도에 미치는 영향에 관한 실험적 분석

  • Lee, Hungkyu (School of Civil, Environmental and Chemical Engineering, Changwon National University)
  • Received : 2018.07.11
  • Accepted : 2018.08.16
  • Published : 2018.08.31

Abstract

Impact of tropospheric correction techniques on accuracy of the GPS (Global Positioning System) derived ellipsoidal heights has been experimentally assessed in this paper. To this end, 247 baselines were constructed from a total of 88 CORS (Continuously Operating Reference Stations) in Korea. The GPS measurements for seven days, acquired from the so-called integrated GNSS (Global Navigation Satellite Systems) data center via internet connection, have been processed by two baseline processing software packages with an application of the empirical models, such as Hopfield, modified Hopfield and Saastamoinen, and the estimation techniques based on the DD (Double-Differenced) measurements and the PPP (Precise Point Positioning) technique; hence a total number of the baseline processed and tested was 8,645. Accuracy and precision of the estimated heights from the various correction schemes were analyzed about baseline lengths and height differences of the testing baselines. Details of these results are summarized with a view to hopefully providing an overall guideline of a suitable selection of the modeling scheme with respect to processing conditions, such as the baseline length and the height differences.

본 논문에서는 GPS 높이측량의 정확도 제고 측면에서 대류권오차 보정방법이 기선해석을 통한 타원체고 추정 정확도와 정밀도에 미치는 영향을 실험적 방법에 의해 연구하였다. 이를 위해 국내 상시관측소 88점을 이용해 기선장과 표고차에 따라 247개 기선을 구성하고, GNSS 통합 데이터센터로부터 7일 분량의 관측 데이터를 취득한 후 2가지 기선해석 소프트웨어에 의해 Hopfield, 수정 Hopfield 그리고 Saastamoinen와 같은 경험식과 이중차분 및 정밀절대측위 대류권 오차 추정기법을 적용해 총 8,645개 실험기선을 처리하였다. 산정한 각 관측점 타원체고의 정확도와 정밀도를 오차 보정기법 따라 계산하고 기선장과 표고차와 같은 기선 구성 조건에 대해 분석하였다. 이를 통해 대류권오차 보정방식의 특징을 정확도와 정밀도 측면에서 고찰하고 GPS 높이측량의 기선해석에서 기선장과 표고차에 대해 적합한 대류권오차 모형화 기법선정을 위한 기초자료를 제공하고자 하였다.

Keywords

References

  1. Beutler, G., Bauersima, I., Gurtner, W., Rothacher, M., Schildknecht, T., and Geiger A. (1987), Atmospheric refraction and other important biases in GPS carrier phase observations, In: Brunner, F.K. (ed.), Atmospheric Effects on Geodetic Space Measurements, School of Surveying, University of New South Wales, Australia, pp. 15-43.
  2. Hofmann-Wellenhof, B., Lichtenegger, H., and Collines, J. (2001), GPS Theory and Practice, Springer-Verlag Wien New York, Wien, Austria, 382p.
  3. Hong, C. (2013), Impact of tropospheric delays on the GPS positioning with double-difference observables, Journal of Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 31, No. 5, pp. 421-427. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2013.31.5.421
  4. Hopfield, H.S. (1969), Two-quartic tropospheric refractivity profile for correcting satellite data, Journal of Geophysical Research, Vol. 74, No. 18, pp. 4487-4499. https://doi.org/10.1029/JC074i018p04487
  5. Javad (2011), GIODIS Software Manual Version 2.2, Javad GNSS Inc., San Jose, California, USA, 99p.
  6. Jung, S., Kwon, J., and Lee, J. (2018), Accuracy analysis of GNSS-derived orthometric heights on leveling loop disconnected area, Journal of Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 36, No. 1, pp. 1-8. https://doi.org/10.7848/KSGPC.2018.36.1.1
  7. Lee, S. and Auh, S. (2016), Accuracy analysis of GPS ellipsoidal height determination in accordance with the surveying conditions, Journal of the Korean Society for Geospatial Information Science, Vol. 23, No. 4, pp. 67-74. (in Korean with English abstract)
  8. Lee, Y., Han, J., and Kwon, J. (2015), Accuracy improvement of real-time GNSS based hegihting using published orthometric height of unified control point, Proceedings of Annual Conference of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 23-24 April, Changwon, Korea, pp. 345-346. (in Korean with English abstract)
  9. Lee, J. and Kwon, J. (2015), Construction and precision verification of Korean national geoid model KNGeoid14, Proceedings of Annual Conference of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 23-24 April, Changwon, Korea, pp. 177-179. (in Korean with English abstract)
  10. Lee H., Wang, J., Rizos, C., and Tsujii, T. (2005), Augmenting GPS by ground-based pseudolite signals for airborne surveying applications, Survey Review, Vol. 38, No. 296, pp. 88-99. https://doi.org/10.1179/sre.2005.38.296.88
  11. Leick, A., Rapoport, L., and Tatarnikov, D. (2015), GPS Satellite Surveying, John Wiley & Sons, Inc., New Jersey, USA, 807p.
  12. Rothacher, M. (2002), Estimation of station heights with GPS, In: Drewes, H., Dodson, A., Fortes, L.P.S., Sanchez, L., Sandoval, P. (ed.), Vertical Reference Systems, Springer-Verlag Berlin Heidelberg, Germany, pp. 81-89.
  13. Saastamoinen, J. (1973), Contribution to theory of atmospheric refraction, Bulletin Geodesique, Vol. 107, pp. 13-34. https://doi.org/10.1007/BF02522083
  14. Seeber, G. (2003), Satellite Geodesy, Walter de Gruyter GmbH & Co., Berlin, Germany, 589p.
  15. Shin, G., Han, J., and Kwon, J. (2014), Accuracy analysis of orthometric heights based on GNSS static surveying, Journal of Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 5, pp. 527-537. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2014.32.5.527
  16. Wang, M. and Li, B. (2016), Evaluation of empirical tropospheric models using satellite-tracking tropospheric wet delays with water vapor radiometer at Tongji, China, Sensors, Vol. 16, No. 2, pp. 186-201. https://doi.org/10.3390/s16020186
  17. Waypoint (2017), GrafNav/GrafNet User Manual, NovAtel Inc., Calgary, Canada, 168p.