DOI QR코드

DOI QR Code

Analysis of the Accuracy of Quaternion-Based Spatial Resection Based on the Layout of Control Points

기준점 배치에 따른 쿼터니언기반 공간후방교회법의 정확도 분석

  • Received : 2018.07.09
  • Accepted : 2018.08.17
  • Published : 2018.08.31

Abstract

In order to determine the three-dimensional position in photogrammetry, a spatial resection is a pre-requisite step to determine exterior orientation parameters. The existing spatial resection method is a non-linear equation that requires initial values of exterior orientation parameters and has a problem that a gimbal lock phenomenon may occur. On the other hand, the spatial resection using quaternion is a closed form solution that does not require initial values of EOP (Exterior Orientation Parameters) and is a method that can eliminate the problem of gimbal lock. In this study, to analyze the stability of the quaternion-based spatial resection, the exterior orientation parameters were determined according to the different layout of control points and were compared with the determined values using existing non-linear equation. As a result, it can be seen that the quaternionbased spatial resection is affected by the layout of the control points. Therefore, if the initial value of exterior orientation parameters could not be obtained, it would be more effective to estimate the initial exterior orientation values using the quaternion-based spatial resection and apply it to the collinearity equation-based spatial resection method.

사진측량에서 3차원 위치를 결정하기 위한 사전단계로 외부표정요소를 결정하는 공간후방교회법을 수행해야한다. 기존의 공선조건식 기반의 공간후방교회법은 비선형 방정식으로 외부표정요소의 초기값이 필요하며 짐벌락 현상이 나타날 수 있는 문제점이 있다. 이에 반해 쿼터니언 기반의 공간후방교회법은 외부표정요소의 초기값이 필요없고 짐벌락의 문제를 제거할 수 있는 방법이다. 본 연구에서는 쿼터니언기반의 공간후방교회법 안정성을 분석하기 위해 기준점의 배치를 달리하여 외부표정요소를 결정하고 이를 기존의 공선조건식 기반의 공간후방교회법을 적용한 것과 비교 하였다. 그 결과 비교적 쿼터니언 기반의 공간후방교회법은 기준점 배치에 따라 공간후방교회법의 정확도가 많은 영향을 받는 것을 알 수 있었다. 따라서 외부표정요소의 초기값을 얻을 수 없다면 쿼터니언 기반의 공간후방교회법으로 초기값을 추정한 후 이를 공선조건식 기반의 공간후방교회법에 적용하는 것이 효과적으로 외부표정요소를 결정할 수 있는 방법으로 나타났다.

Keywords

References

  1. Choi, H.S., Hong, S.P., and Kim, E.M. (2018), Accuracy verification of spatial resection using quaternion in photogrammetry, 2018 Conference of The Korean Society for Geospatial Information Science, The Korean Society for Geospatial Information Science, 18-19 May, Jinju, Korea, pp. 197-198.
  2. Easa, S.M. (2010), Space resection in photogrammetry using collinearity condition without linearisation, Survey Review, Vol. 42, No. 315, pp. 40-49. https://doi.org/10.1179/003962609X451681
  3. Elnima, E.E. (2015), A solution for exterior and relative orientation in photogrammetry, a genetic evolution approach, Journal of King Saud University-Engineering Sciences, Vol. 27, No. 1, pp. 108-113. https://doi.org/10.1016/j.jksues.2013.05.004
  4. Kim, E.M. (2018), Semi-automatic camera calibration using quaternions, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 36, No. 2, pp. 43-50. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2018.36.2.43
  5. Lee, Y.W. (2013), Decision of EO parameters based on direct georeferencing using SmartBase, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 31, No. 2, pp. 135-142. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2013.31.2.135
  6. Luhmann, T., Robson, S., Kyle S., and Harley I. (2011), Close Range Photogrammetry Principles, techniques and applications, Whittles Publishing, Scotland, UK.
  7. Mazaheri, M. and Habib, A. (2015), Quaternion-based solutions for the single photo resection problem, Photogrammetric Engineering & Remote Sensing, Vol. 81, No. 3, pp. 209-217. https://doi.org/10.14358/PERS.81.3.209-217
  8. Mikhail, E.M., Bethel, J.S., and McGlone, J.C. (2001), Introduction to Modern Photogrammetry, John Wiley & Sons Inc., New York, N.Y.
  9. Wolf, P.R., Dewitt, B.A., and Wilkinson, B.E. (2014), Elements of Photogrammetry with Applications in GIS, Fourth Edition, McGraw-Hill, New York, N.Y.
  10. Wu, C., Qin, Q., Ma, G., Fu, Z., and Xu, Z. (2017), Large-rotation-angle photogrammetric resection based on least-squares homotopy iteration method, IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 8, pp. 1188-1192. https://doi.org/10.1109/LGRS.2017.2694016
  11. Zeng, H. (2010), Iterative algorithm of space resection using rodrigues matrix, 2010 International Conference on, Environmental Science and Information Application Technology, ESIAT, 17-18 July 2010, Wuhan, China, pp. 191-194.