DOI QR코드

DOI QR Code

Study on Feasibility of Fluidized Bed Membrane Reactor with Granular Activated Carbon Particles as Fluidized Media to Treat Metal-plating Wastewater

도금폐수처리를 위한 입상활성탄 유동 메디아 적용 유동상 멤브레인 여과기술의 적용가능성 평가에 관한 연구

  • Chang, Soomin (Department of Environmental Engineering, Inha University) ;
  • Kwon, Deaeun (Department of Environmental Engineering, Inha University) ;
  • Kim, Jeonghwan (Department of Environmental Engineering, Inha University)
  • Received : 2018.08.20
  • Accepted : 2018.08.24
  • Published : 2018.08.31

Abstract

An acidic, real metal-plating wastewater was treated by a fluidized bed membrane reactor introduced with granular activated carbon (GAC) as fluidized media. With GAC fluidization, there was no increase in suction pressure with time at each flux set-point applied. At neutral solution pH, much less fouling rate was observed than acidic pH under GAC fluidization. Higher solution pH resulted in the increase in particle size in metal-finishing wastewater, thus producing a less dense cake structure on membrane. More than 95% of chemical oxygen demand was observed from the fluidized bed membrane reactor under GAC fluidization. Total suspended solid concentration in membrane permeate was near zero. At the raw wastewater pH, no removal of copper and chromium by the fluidized bed membrane reactor was observed. As the pH was increased to 7.0, removal efficiency of copper and chromium was increased considerably to 99 and 94%, respectively. Regardless of solution pH tested, more than 95% of cyanide was removed possibly due to the strong adsorption of organic-cyanide complex on GAC in fluidized bed membrane reactor.

실 산성 도금폐수를 입상활성탄(GAC)이 유동메디아로 첨가된 유동상 멤브레인 반응기를 이용하여 처리하였다. GAC 유동조건에서 적용 투과플럭스에 대해 시간에 따른 흡입압의 증가는 관찰되지 않았다. 폐수의 중성 pH에서 파울링 속도는 산성 조건에 비해 GAC 유동조건에서 크게 감소하였다. 해당 폐수의 용액 pH 증가는 입자크기의 증가를 가져왔고 이는 멤브레인 표면에서 상대적으로 성긴 구조의 케이크층 형성을 야기시켰다. 유동상 멤브레인 반응기에서 GAC 유동 하에 95%이상의 COD 제거율이 관찰되었으며 총부유물질은 거의 완벽하게 제거되었다. 실 도금폐수의 pH에서, 유동상 멤브레인 반응기의 구리 및 크롬의 제거는 거의 관찰 되지 않았다. 그러나 pH를 중성으로 증가 시켰을 시 구리와 크롬의 제거율은 각각 99%와 94%까지 증가를 하였다. 적용해 준 pH에 상관 없이, 시안의 경우 95% 이상의 제거율을 달성하였다. 이는 유기물과 시안 착물 형성으로 인해 유동상 멤브레인 반응기 내 GAC의 강한 흡착으로 제거된 것으로 사료된다.

Keywords

References

  1. F. Akbal and S. Camci, "Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation", Desalination, 269, 214 (2011). https://doi.org/10.1016/j.desal.2010.11.001
  2. M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M. R. Qtaishat, and M. Alkasrawi, "Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance", Chem. Eng. J., 260, 749 (2015). https://doi.org/10.1016/j.cej.2014.09.035
  3. I. Kabdasli, T. Arslan, T. Olmez-Hanci, I. Arslan-Alaton, and O. Tunay, "Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes", J. Hazard. Mater., 165, 838 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.065
  4. J. Goel, K. Kadirvelu, C. Rajagopal, and V. K. Garg, "Removal of lead (II) by adsorption using treated granular activated carbon: Batch and column studies", J. Hazard. Mater., 125, 211 (2005). https://doi.org/10.1016/j.jhazmat.2005.05.032
  5. C. Lee, S. Lee, A. Park, C. Park, S. Lee, S. Kim, B. An, S. Yun, S. Lee, and J. Choi, "Removal of copper, nickel and chrominum mixtures from metal plating wastewater by adsorption with modified carbon form", Chemosphere, 166, 203, (2017). https://doi.org/10.1016/j.chemosphere.2016.09.093
  6. S. R. H. Abadi, M. R. Sebzari, M. Hemati, F. Rekabdar, and T. Mohammadi, "Ceramic membrane performance in microfiltration of oily wastewater", Desalination, 265, 222 (2011). https://doi.org/10.1016/j.desal.2010.07.055
  7. E. Park, H. Jang, N. Choi, S. Lee, and J. Kim, "Feasibility of pyrophyllite ceramic membrane for wastewater treatment and membrane Fouling", Membr. J., 26, 205 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.3.205
  8. R. Ahmad, M. Aslam, E. Park, S. Chang, and J. Kim, "Submerged low-cost pyrophyllite ceramic membrane filtration combined with GAC as fluidized particles for industrial wastewater treatment", Chemosphere, 206, 784 (2018). https://doi.org/10.1016/j.chemosphere.2018.05.045
  9. M. S. Seyed, G. T. Shirley, and A. Ali, "The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters: A review", Sep. Purif. Technol., 200, 198 (2018). https://doi.org/10.1016/j.seppur.2018.02.041
  10. J. Lim, K. Lee, Y. Lee, and J. Park, "Optimum Coagulation Conditions for Ceramic Microfiltration Membrane Process", Membr. J., 22, 135 (2012).
  11. J. Kim, K. Kim, H. Ye, E. Lee, C. Shin, P. L. McCarty, and J. Bae "Anaerobic fluidized bed membrane bioreactor for wastewater treatment", Environ. Sci. Technol., 45, 576 (2011). https://doi.org/10.1021/es1027103
  12. M. A. Johir, S. Shanmuganathan, S. Vigneswaran, and J. Kandasamy, "Performance of submerged membrane bioreactor (SMBR) with and without the addition of the different particle sizes of GAC as suspended medium", Bioresour. Technol., 141, 13 (2013). https://doi.org/10.1016/j.biortech.2013.03.032
  13. G. G. Stavropoulos, G. S. Skodras, and K. G. Papadimitrious, "Effect of solution chemistry on cyanide adsorption in activated carbon", Appl. Therm. Eng., 74, 182 (2015). https://doi.org/10.1016/j.applthermaleng.2013.09.060
  14. J. Park and G. Park, "Advanced Water Treatment of High Turbidity Source by Hybrid Process of Ceramic Microfiltration and Activated Carbon Adsorption: Effect of Organic Materials in N2-back-flushing", Membr. J., 19, 203 (2009)