DOI QR코드

DOI QR Code

CFD Validation of Solid-Liquid Two-Phase flow for Analysis of Drilling Fluid Flow Characteristics

이수의 유동 특성 분석을 위한 고체-액체 2상 유동의 전산유체역학적 유효성 검토

  • Choi, Yong-Seok (Busan Headquarters, Korea Marine Equipment Research Institute) ;
  • Park, Jae-Hyoun (Busan Headquarters, Korea Marine Equipment Research Institute) ;
  • Bae, Jae-Hwan (Busan Headquarters, Korea Marine Equipment Research Institute) ;
  • Lee, Bong-Hee (Busan Headquarters, Korea Marine Equipment Research Institute) ;
  • Kim, Jeong-Hwan (Busan Headquarters, Korea Marine Equipment Research Institute)
  • 최용석 (한국조선해양기자재연구원 부산연구본부) ;
  • 박재현 (한국조선해양기자재연구원 부산연구본부) ;
  • 배재환 (한국조선해양기자재연구원 부산연구본부) ;
  • 이봉희 (한국조선해양기자재연구원 부산연구본부) ;
  • 김정환 (한국조선해양기자재연구원 부산연구본부)
  • Received : 2018.06.07
  • Accepted : 2018.08.28
  • Published : 2018.08.31

Abstract

In this study, numerical analysis of solid-liquid two-phase flow was conducted as a preliminary step to analyze the flow characteristics of drilling fluid using the commercial CFD code, ANSYS CFX 14.5. The homogeneous model and separated flow model were used to simulate solid-liquid two-phase flow phenomena. In the separated flow model, Gidaspow's drag force model was applied with the kinetic theory model was applied for solid particles. The validity of the numerical model used in this study was verified based on the published experimental results. Numerical analysis was carried out for volume fractions of 0.1 to 0.5 and velocities of 1 to 5 m/s in a horizontal tube with a diameter of 54.9 mm and a length of 3 m. The Pressure drop and volume fraction distribution of solid particles were confirmed. The pressure drop was predicted using the homogeneous model and separated flow model within the MAE of 17.04 % and 8.98 %, respectively. A high volume fraction was observed in the lower part of the tube, and the volume fraction decreased toward the upper part. As velocity increased, variations in volume fraction distribution at varying heights were decreased, and the numerical results predicted these flow characteristics well.

본 연구에서는 이수의 유동 특성을 분석하기 위한 기초 연구로서 상용 코드인 ANSYS CFX 14.5를 이용하여 고체-액체 2상 유동에 대한 수치해석적 연구를 수행하였다. 고체-액체 2상 유동 현상을 모사하기 위해서 균질류 모델과 분리류 모델을 사용하였다. 분리류 모델에서는 Gidaspow의 항력모델을 적용하였으며, 고체 입자에 운동 이론 모델을 적용하였다. 기존의 실험 결과를 기반으로 본 연구에서 사용한 수치해석 모델의 유효성을 검토하였으며, 수치해석은 직경 54.9 mm, 길이 3 m의 수평관에서 체적 분율 0.1~0.5, 속도 1~5 m/s 범위에서 수행되었다. 그리고 압력강하와 고체 입자의 체적 분율 분포를 확인하였으며, 압력강하는 균질류 모델과 분리류 모델이 각각 MAE 17.04 %, 8.98 % 이내에서 실험결과를 잘 예측하였다. 관의 하부에서 높은 체적 분율이 나타나며, 상부로 갈수록 체적 분율은 감소하였다. 그리고 속도가 증가할수록 높이 변화에 따른 체적 분율 분포의 변화는 감소하였으며, 수치해석 결과는 이러한 유동 특성을 잘 예측하였다.

Keywords

References

  1. An, B. K. and H. J. Oh(2012), Semi-submersible Drilling Rig and Drilling Equipment, Journal of Ocean Engineering and Technology, Vol. 21, No. 6, pp. 86-92.
  2. Choi, Y. S., T. W. Lim, S. S. You, H. S. Choi and H. S. Kim(2014), Experimental and Numerical Analysis for Single-Phase Flow Pressure Drop in Parallel Micro-Channels, Journal of Fishries and Marine Sciences Education, Vol. 26, No. 5, pp. 1090-1095. https://doi.org/10.13000/JFMSE.2014.26.5.1090
  3. Choi, Y. S., T. W. Lim and Y. T. Kim(2017), Numerical Analysis on Heat Transfer Characteristics of Alumina/Water Nanofluid using a Single-Phase Model, Journal of the Korean Society of Marine Engineering, Vol. 41, No. 7, pp. 612-618. https://doi.org/10.5916/jkosme.2017.41.7.612
  4. Corcione, M.(2011), Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids, Energy Conversion and Management, Vol. 52, No. 1, pp. 789-793. https://doi.org/10.1016/j.enconman.2010.06.072
  5. Ekambara, K., R. S. Sanders, K. Nandakumar and J. H. Masliyah(2009), Hydrodynamic Simulation of Horizontal Slurry Pipeline Flow Using ANSYS-CFX, Industrial & Engineering Chemistry Research, Vol. 48, No. 17, pp. 8159-8171. https://doi.org/10.1021/ie801505z
  6. Einstein, A.(1956), Investigations on the Theory of the Brownian Movement, Courier Corporations. pp. 36-62.
  7. Gidaspow, D.(1994), Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, Academic Press. pp. 31-60.
  8. Gillies, R. G., C. A. Shock and J. Xu(2004), Modelling Heterogeneous Slurry Flows at High Velocities, The Canadian Journal of Chemical Engineering, Vol, 82, No. 5, pp. 1060-1065. https://doi.org/10.1002/cjce.5450820523
  9. Kaushal, D. R., K. Sato, T. Toyota, K. Funatsu and Y. Tomita(2005), Effect of Particle Size Distribution on Pressure Drop and Concentration Profile in Pipeline Flow of Highly Concentrated Slurry, International Journal of Multiphase Flow, Vol. 31, No. 7, pp. 809-823. https://doi.org/10.1016/j.ijmultiphaseflow.2005.03.003
  10. Kim, T. Y., G. M. Jeon, D. K. Ock and J. C. Park(2017), Simulation-Based Design of Shear Mixer for Improving Mixing Performance, Journal of the Korean Society for Marine Environment and Energy, Vol. 20, No. 2, pp. 107-116. https://doi.org/10.7846/JKOSMEE.2017.20.2.107
  11. Lim, T. W., J. H. Choi, J. H. Kim and Y. S. Choi(2012), Pressure Drop due to Friction in Small Rectangular Channel, Journal of the Korean Society of Marine Environment & Safety, Vol. 18, No. 5, pp. 461-467. https://doi.org/10.7837/kosomes.2012.18.5.461
  12. Ofei, T. N. and A. Y. Ismail(2016), Eulerian-Eulearian Simulation of Particle-Liquid Slurry Flow in Horizontal Pipe, Journal of Petroleum Engineering, Vol. 2016, Article ID 5743471, pp. 1-10.
  13. Saeid, N. H. and B. S. Busahmin(2016), Numerical Investigations of Drilling Mud Flow Characteristics in Vertical Well, IRACST-Engineering Science and Technology: An International Journal (ESTIJ), Vol. 6, No. 4, pp. 16-22.
  14. Tomiyama, A.(2004), Drag, lift and Virtual Mass Forces acting on a Single Bubble, In Proceedings of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, pp. 22-24.
  15. Wen, C. Y. and Y. H. Yu(1966), Mechanics of Fluidization, The Chemical Engineering Progress Symposium Series, Vol. 62, pp. 100-111.