DOI QR코드

DOI QR Code

Auraptene Inhibits Migration and Invasion of Cervical and Ovarian Cancer Cells by Repression of Matrix Metalloproteinasas 2 and 9 Activity

  • Jamialahmadi, Khadijeh (Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences) ;
  • Salari, Sofia (Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences) ;
  • Alamolhodaei, Nafiseh Sadat (Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences) ;
  • Avan, Amir (Metabolic Syndrome Research Center, Mashhad University of Medical Sciences) ;
  • Gholami, Leila (Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences) ;
  • Karimi, Gholamreza (Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences)
  • 투고 : 2018.04.04
  • 심사 : 2018.08.02
  • 발행 : 2018.09.30

초록

Objectives: Auraptene, a natural citrus coumarin, found in plants of Rutaceae and Apiaceae families. In this study, we investigated the effects of auraptene on tumor migration, invasion and matrix metalloproteinase (MMP)-2 and -9 enzymes activity. Methods: The effects of auraptene on the viability of A2780 and Hela cell lines was evaluated by MTT assay. Wound healing migration assay and Boyden chamber assay were determined the effect of auraptene on migration and cell invasion, respectively. MMP-2 and MMP-9 activities were analyzed by gelatin zymography assay. Results: Auraptene reduced A2780 cell viability. The results showed that auraptene inhibited in vitro migration and invasion of both cells. Furthermore, cell invasion ability suppressed at $100{\mu}M$ auraptene in Hela cells and at 25, $50{\mu}M$ in A2780 cell line. Gelatin zymography showed that for Hela cell line, auraptene suppressed MMP-2 enzymatic activity in all concentrations and for MMP-9 at a concentration between 12.5 to $100{\mu}M$ in A2780 cell line. Conclusion: Auraptene inhibited migration and invasion of human cervical and ovarian cancer cells in vitro by possibly inhibitory effects on MMP-2 and MMP-9 activity.

키워드

참고문헌

  1. Koh WJ, Greer BE, Abu-Rustum NR, Apte S M, Campos SM, Cho KR, et al. Cervical cancer, version 2.2015. J Natl Compr Canc Netw. 2015;13(4):395-404. https://doi.org/10.6004/jnccn.2015.0055
  2. Wu H, Wang S, Weng D, Xing H, Song X, Zhu T, et al. Reversal of the malignant phenotype of ovarian cancer A2780 cells through transfection with wild-type PTEN gene. Cancer Lett. 2008;271(2):205-214. https://doi.org/10.1016/j.canlet.2008.06.018
  3. Roomi MW, Kalinovsky T, Rath M, Niedzwiecki A. A Specific Mixture of Nutrients Suppresses Ovarian Cancer A-2780 Tumor Incidence, Growth, and Metastasis to Lungs. Nutr. 2017;9(3):303.
  4. Hiratsuka S, Nakamura K,Iwai S, Murakami M,Itoh T, Kijima H, etal.MMP9inductionbyvascularendothelialgrowthfactorreceptor-1isinvolvedinlung-specificme-tastasis.CancerCell.2002;2(4):289-300.
  5. Sounni NE, Devy L, Hajitou A, Frankenne F, MunautC, Gilles C, et al. MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. The FASEB J. 2002;16(6):555-564. https://doi.org/10.1096/fj.01-0790com
  6. Clark IM, YoungDA,RowanAD. Matrix metalloproteinase protocols: Springer; 2001.
  7. Luca M, HuangS,GershenwaldJE, Singh RK, Reich R, Bar-Eli M. Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol. 1997;151(4):1105-11013.
  8. MannelloF, Gazzanelli G. Tissue inhibitors of metalloproteinases and programmed cell death: conundrums, controversies and potential implications. Apoptosis. 2001;6:479-482. https://doi.org/10.1023/A:1012493808790
  9. Sang Q-XA, Jin Y,Newcomer RG,Monroe SC,Fang X, Hurst DR, etal.Matrixmetalloproteinaseinhibitorsasprospectiveagentsforthepreventionandtreatmentofcardiovascularandneoplasticdiseases. CurTopMedChem.2006;6(6):289-316.
  10. Genovese S, Epifano F. Auraptene: a natural biologically active compound with multiple targets. Cur Drug Targets. 2011;12(3):381-386. https://doi.org/10.2174/138945011794815248
  11. Curini M, Cravotto G, Epifani F, Giannone G. Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr Med Chem. 2006;13(2):199-222. https://doi.org/10.2174/092986706775197890
  12. Okuyama S, Minami S, Shimada N, Makihata N, Nakajima M, Furukawa Y. Anti-inflammatory and neuroprotective effects of auraptene, a citrus coumarin, following cerebral global ischemia in mice. Euro J Pharmacol. 2013;699(1-3):118-123. https://doi.org/10.1016/j.ejphar.2012.11.043
  13. Prince M, Li Y, Childer A, Itoh K, Yamamoto M, Kleiner HE. Comparison of citrus coumarins on carcinogen-detoxifying enzymes in Nrf2 knockout mice. Toxicol Lett. 2009;185(3):180-186. https://doi.org/10.1016/j.toxlet.2008.12.014
  14. Wu L, Wang X, Xu W, Farzaneh F, Xu R. The structure and pharmacological functions of coumarins and their derivatives. Curr Med Chem. 2009;16(32):4236-4260. https://doi.org/10.2174/092986709789578187
  15. Takeda K, Utsunomiya H, Kakiuchi S, Okuno Y, Oda k, Inada KI, et al. Citrus auraptene reduces Helicobacter pylori colonization of glandular stomach lesions in Mongolian gerbils. J Oleo Sci. 2007;56(5):253-260. https://doi.org/10.5650/jos.56.253
  16. Furukawa Y, Watanabe S, Okuyama S, Nakajima M. Neurotrophic effect of citrus auraptene: neuritogenic activity in PC12 cells. Int J Mol Sci. 2012;13(5):5338-5347. https://doi.org/10.3390/ijms13055338
  17. Tanaka T, Sugiura H, Inaba R, Nishikawa A, Murakami A, Koshimizu K, et al. Immunomodulatory action of citrus auraptene on macrophage functions and cytokine production of lymphocytes in female BALB/c mice. Carcinog.1999;20(8):1471-1476. https://doi.org/10.1093/carcin/20.8.1471
  18. Soltani F, Mosaffa F, Iranshahi M, Karimi G, Malekaneh M, Haghighi F. Auraptene from Ferula szowitsiana protects human peripheral lymphocytes against oxidative stress. Phy Res. 2010;24(1):85-89. https://doi.org/10.1002/ptr.2874
  19. Krishnan P, Yan KJ, Windler D, Tubbs J, Grand R, Li BDL, et al. Citrus auraptene suppresses cyclin D1 and significantly delays N-methylnitrosourea induced mammary carcinogenesis in female Sprague-Dawley rats. BMC Cancer. 2009;9:259. https://doi.org/10.1186/1471-2407-9-259
  20. Tanaka T, Kawabata K, Kakumoto M, Hara A, Murakami A, Kuki W, et al. Citrus auraptene exerts dose-dependent chemopreventive activity in rat large bowel tumorigenesis: the inhibition correlates with suppression of cell proliferation and lipid peroxidation and with induction of phase II drug- metabolizing enzymes. Cancer Res. 1998;58(12):2550-2556.
  21. Kawabata K, Murakami A, Ohigashi H. Auraptene decreases the activity of matrix metalloproteinases in dextran sulfate sodium-induced ulcerative colitis in ICR mice. Biosci Biotechnol Biochem. 2006;70(12):3062-3065. https://doi.org/10.1271/bbb.60393
  22. Rodriguez LG, Wu X, Guan JL. Wound-healing assay. Cell Migration: Developmental Methods and Protocols. 2005;23-29.
  23. Moreno-Bueno G, PeinadoH,MolinaP,OlmedaD,CubilloE, SantosV,etal. The morphological and molecular features of the epithelial-to-mesenchymal transition. Nat Protoc. 2009;4(11):1591-1613. https://doi.org/10.1038/nprot.2009.152
  24. Keenan TM, Folch A. Biomolecular gradients in cell culture systems. Lab Chip. 2008;8(1):34-57. https://doi.org/10.1039/B711887B
  25. Frankowski H, Gu YH, HeoJH,MilnerR,DelZoppo GJD. Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures. Astrocytes: Methods and Protocols. 2012;221-33.
  26. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  27. Chen HJ, Lin CY, Lee CY, Shih NC, Peng SF, Tsuziki M, et al. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncol Rep. 2013;30(2):925-32. https://doi.org/10.3892/or.2013.2490
  28. Tang MX, Ogawa K, Asamoto M, Hokaiwado N, Seeni A, Suzuki A, et al. Protective effects of citrus nobiletin and auraptene in transgenic rats developing adenocarcinoma of the prostate (TRAP) and human prostate carcinoma cells. Cancer Sci. 2007;98(4):471-7. https://doi.org/10.1111/j.1349-7006.2007.00417.x
  29. Zheng Q, Hirose Y, Yoshimi N, Murakami A, Koshimizu K, Ohigashi H, et al. Further investigation of the modifying effect of various chemopreventive agents on apoptosis and cell proliferation in human colon cancer cells. J Cancer Res Clin Oncol. 2002;128(10):539-46. https://doi.org/10.1007/s00432-002-0373-y
  30. Wang S, Yoon YC, Sung MJ, Hwang JT, Hur HJ, Kim HJ, et al. Citrus-derived auraptene stimulates angiogenesis by activating the Erk-and PI3K/Akt/eNOS-dependent signaling pathways in human umbilical vein endothelial cells. J Funct Foods. 2012;4(4):899-905. https://doi.org/10.1016/j.jff.2012.06.007
  31. La VD, Zhao L, Epifano F, Genovese S, Grenier D. Anti-inflammatory and wound healing potential of Citrus auraptene. J Med Food. 2013;16(10):961-4. https://doi.org/10.1089/jmf.2013.0029
  32. Mao X, Yin W, Liu M, Ye M, Liu P, Liu J, et al. Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats. Brain Res. 2011;1385:275-80. https://doi.org/10.1016/j.brainres.2011.02.015
  33. Iranshahi M, Kalategi F, Rezaee R, Shahverdi AR, Ito C, Furukawa H, et al. Cancer chemopreventive activity of terpenoid coumarins from Ferula species. Planta medica. 2008;74:147-150. https://doi.org/10.1055/s-2008-1034293