DOI QR코드

DOI QR Code

Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review

  • Received : 2017.12.27
  • Accepted : 2018.02.06
  • Published : 2018.09.30

Abstract

Microalgae are likely to become a part of our everyday diet in the near future as they are considered to be rich in proteins, carbohydrates, and high density lipoproteins. They will play a pivotal role in the food cycle of many people around the globe. Use of microalgae in treating wastewater is also one of the disciplines which are luring researchers as this contributes to a sustainable way of exploiting resources while keeping the environment safe. In addition, microalgal biomass also has the potential to be used as a feedstock for producing biofuel, bio fertilizers, pharmaceuticals, nutraceuticals and other bio-based products. This review presents the different value-added products obtained from microalgal biomass and the applicability of these products commercially.

Keywords

References

  1. Shivhare S, Mishra AK, Sethi VK, Bhadoria AKS. Growth rate, biochemical and biomass analysis of scenedesmus obliquus algae in Shahpura Lake Bhopal (MP). Int. J. Pharm. Chem. Sci. 2014;3:477-482.
  2. Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour. Technol. 2011;102:57-70. https://doi.org/10.1016/j.biortech.2010.06.077
  3. Sumi Y. Microalgae pioneering the future-application and utilization. Sci. Technol. Trend. 2009;34:9-21.
  4. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev. 2010;14:217-232. https://doi.org/10.1016/j.rser.2009.07.020
  5. Priyadarshani I, Rath B. Commercial and industrial applications of micro algae - A review. J. Algal Biomass Utln. 2012;3:89-100.
  6. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S. Biofuels from algae: Challenges and potential. Biofuels 2010;1:763-784. https://doi.org/10.4155/bfs.10.44
  7. Ercin AE, Aldaya MM, Hoekstra AY. The water footprint of soy milk and soy burger and equivalent animal products. Ecol. Indic. 2012;18:392-402. https://doi.org/10.1016/j.ecolind.2011.12.009
  8. Rashida N, Rehmanb MSU, Sadiqd M, Mahmoode T, Han JI. Current status, issues and developments in microalgae derived biodiesel production. Renew. Sust. Energ. Rev. 2014;40:760-778. https://doi.org/10.1016/j.rser.2014.07.104
  9. Schenk P M, Thomas-Hall SR, Stephens E, et al. Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Res. 2008;1:20-43. https://doi.org/10.1007/s12155-008-9008-8
  10. Rajesh G, Roshan M, Krishnamurthy V, Bhattacharjee S. Production of lipids in photobioreactors using microalgae. Int. J. Sci. Eng. Res. 2014;5:1223-1238.
  11. Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004;65:635-648. https://doi.org/10.1007/s00253-004-1647-x
  12. Minhas AK, Hodgson P, Barrow CJ, Adholeya A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol. 2016;7:1-19.
  13. The next big superfood could be green and slimy [Internet]. Baehr: c2011 [cited 07 August 2017]. Available from: http://www.businessinsider.com/algae-is-the-superfood-of-the-future-2014-6.
  14. Misra R, Guldhe A, Singh P, Rawat I, Bux F. Electrochemical harvesting process for microalgae by using nonsacrificial carbon electrode: A sustainable approach for biodiesel production. Chem. Eng. J. 2014;255:327-333. https://doi.org/10.1016/j.cej.2014.06.010
  15. Borowitzka MA. High-value products from microalgae - Their development and commercialisation. J. Appl. Phycol. 2013;25:743-756. https://doi.org/10.1007/s10811-013-9983-9
  16. Mozaffarieh M, Sacu S, Wedrich A. The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. Nutr. J. 2003;2:1-8. https://doi.org/10.1186/1475-2891-2-1
  17. Fernandez-Sevilla JM, Fernandez FA, Grima EM. Biotechnological production of lutein and its applications. Appl. Microbiol. Biotechnol. 2010;86:27-40. https://doi.org/10.1007/s00253-009-2420-y
  18. Guedes AC, Amaro HM, Malcata X. Microalgae as sources of carotenoids. Mar. Drugs 2011;9:625-644. https://doi.org/10.3390/md9040625
  19. Sanchez JF, Fernandez-Sevilla JM, Acien FG, Ceron MC, Perez-Parra J, Molina-Grima E. Biomass and lutein productivity of Scenedesmus almeriensis: Influence of irradiance, dilution rate and temperature. Appl. Microbiol. Biotechnol. 2008;79:719-729. https://doi.org/10.1007/s00253-008-1494-2
  20. Molina E, Fernandez JM, Acien FG, et al. Production of lutein from the microalga Scenedesmus almeriensis in an industrial size photobioreactor: Case study. In: Oral presentation at the 10th International Conference on Applied Phycology, Kunming, China; 2005.
  21. Panis G, Carreon JR. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Res. 2016;18:175-190. https://doi.org/10.1016/j.algal.2016.06.007
  22. Shah M, Mahfuzur R, Liang Y, Cheng JJ, Daroch M. Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Front. Plant Sci. 2016;7:1-28.
  23. Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra- Saldivar R. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 2015;8:190-209. https://doi.org/10.1111/1751-7915.12167
  24. Pisal DS, Lele SS. Carotenoid production from microalga, Dunaliella salina. Ind. J. Biotechnol. 2005;4:476-483.
  25. Sajilata M, Singhal R, Kamat M. The carotenoid pigment zeaxanthin - A review. Compr. Rev. Food Sci. Food Safe. 2008;7:29-49. https://doi.org/10.1111/j.1541-4337.2007.00028.x
  26. Granado-Lorencio F, Herrero-Barbudo C, Acien-Fernandez G, et al. In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chem. 2009;114:747-752. https://doi.org/10.1016/j.foodchem.2008.10.058
  27. Guillerme JB, Couteau C, Coiffard L. Applications for marine resources in cosmetics. Cosmetics 2017:4:1-15. https://doi.org/10.3390/cosmetics4010001
  28. Market opportunities for microalgae-based biorefineries [Internet]. Jesse: c2016 [cited 01 Feb 2018]. Available from: https://insightrefinery.wordpress.com/2016/02/08/market-opportunities-for-microalgae-based-biorefineries/.
  29. Winwood RJ. Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. OCL 2013;20:1-5. https://doi.org/10.1051/ocl.2012.0492
  30. Patil V, Reitan KI, Knutsen G, et al. Microalgae as source of polyunsaturated fatty acids for aquaculture. Plant Biol. 2005;6:57-65.
  31. Patil V, Kallqvist T, Olsen E, Vogt E, Gislerod HR. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult. Int. 2007;15:1-9. https://doi.org/10.1007/s10499-006-9060-3
  32. Matos J, Cardoso C, Bandarra N. M, Afonso C. Microalgae as healthy ingredients for functional food: A review. Food Funct. 2017;8:2672-2685. https://doi.org/10.1039/C7FO00409E
  33. Agarwal S, Rao AV. Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J. 2000;163:739-744.
  34. Mourelle ML, Gomez CP, Legido JL. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics 2017;4:1-14. https://doi.org/10.3390/cosmetics4010001
  35. Giovannucci E. Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J. Nat. Can. Inst. 1999;91:317-331. https://doi.org/10.1093/jnci/91.4.317
  36. Schweiggert RM, Carle R. Carotenoid production by bacteria, microalgae, and fungi. In: Kaczor A, Baranska M, eds. Carotenoids: Nutrition, analysis and technology. John Wiley & Sons, Ltd.; 2016. p. 217-240.
  37. Renju G, Kurup GM, Kumari CS. Effect of lycopene from Chlorella marina on high cholesterol-induced oxidative damage and inflammation in rats. Inflammopharmacology 2014;22:45-54. https://doi.org/10.1007/s10787-013-0178-4
  38. Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol. Adv. 2013;31:1532-1542. https://doi.org/10.1016/j.biotechadv.2013.07.011
  39. Sekar S, Chandramohan M. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Appl. Phycol. 2008;20:113-136. https://doi.org/10.1007/s10811-007-9188-1
  40. Odjadjare EC, Mutanda T, Olaniran O. Potential biotechnological application of microalgae: A critical review. Crit. Rev. Biotechnol. 2017;37:37-52. https://doi.org/10.3109/07388551.2015.1108956
  41. De Jesus Raposo MF, de Morais RMSC, de Morais AMMB. Health applications of bioactive compounds from marine microalgae. Life Sci. 2013;93:479-486. https://doi.org/10.1016/j.lfs.2013.08.002
  42. Carotenoids - Global Market Outlook [Internet] Anonymous: 2017 [cited 17 December 2017]. Available from: https://www.reportlinker.com/p04670904/Carotenoids-Global-Market-Outlook.html.
  43. Soletto D, Binaghi L, Lodi A, Carvalho JCM, Converti A. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 2005;243:217-224. https://doi.org/10.1016/j.aquaculture.2004.10.005
  44. Varfolomeev SD, Wasserman LA. Microalgae as source of biofuel, food, fodder, and medicines. Appl. Biochem. Microbiol. 2011;47:789-807. https://doi.org/10.1134/S0003683811090079
  45. Liu Y, Xu L, Cheng N, Lin L, Zhang C. Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. J. Appl. Phycol. 2000;12:125-130. https://doi.org/10.1023/A:1008132210772
  46. Liang S, Liu X, Chen F, Chen Z. Current microalgal health food R & D activities in China. Hydrobiologia 2004;512:45-48 https://doi.org/10.1023/B:HYDR.0000020366.65760.98
  47. Talero Barrientos EM, Garcia-Maurino S, Roman A, et al. Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar. Drugs 2015;13:6152-6209. https://doi.org/10.3390/md13106152
  48. Bishop MA, West, Zubeck M. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. Nutr. Food Sci. 2012;2:1-6.
  49. Mokady S, Abramovici A, Cogan U. The safety evaluation of Dunaliella bardawil as a potential food supplement. Food Chem. Toxicol. 2014;27:221-226.
  50. Gross U, Gross R. Acceptance and product selection of food fortified with the microalga Scenedesmus. In: Carl JS, Binsack R, eds. Microalgae for food and feed. Stuttgart: Archiv fur Hydrobiologie Beihefte Ergebnisse der Limnologie;1978. p. 174-183.
  51. Ishaq AG, Matias-Peralta HM, Basri H. Bioactive compounds from green microalga-scenedesmus and its potential applications: A brief review. Pert. J. Trop. Agr. Sci. 2016;39:1-16.
  52. Sousa I, Gouveia L, Batista P, Raymundo A, Bandarra N. Microalgae in novel food products. In: Konstantinos N, Papadopoulos, eds. Food chemistry research developments. Nova Science Publishers; 2008. p. 75-112.
  53. Kagan ML, Matulka RA. Safety assessment of the microalgae Nannochloropsis oculata. Toxicol. Rep. 2015;2:617-623. https://doi.org/10.1016/j.toxrep.2015.03.008
  54. Babuskin S, Krishnan KR, Babu PAS, Sivarajan M, Sukumar M. Functional foods enriched with marine microalga Nannochloropsis oculata as a source of [omega]-3 fatty acids. Food Technol. Biotechol. 2014;52:292-299.
  55. Jensen GS, Ginsberg DI, Drapeau C. Blue-green algae as an immuno-enhancer and biomodulator. J. Nutraceu. Nutri. 2001;3:24-30.
  56. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006;10:87-96.
  57. Algae market, by application, by cultivation technology, and geography - Global industry analysis, size, share, growth, trends, and forecast - 2016-2024 [Internet]. Anonymous: 2016 [Cited 17 December 2017]. Available from: https://www.prnewswire.com/news-releases/global-algae-market-is-projected-to-be-worth-us11-bn-by-2024-at-a-cagr-of-739-global-industry-analysis-size-share-growth-trends-andforecast-2016---2024-tmr-594253011.html.
  58. García JL, Vicente M, Galan B. Microalgae, old sustainable food and fashion nutraceuticals. Microb. Biotechnol. 2017;10:1017-1024. https://doi.org/10.1111/1751-7915.12800
  59. Borowitzka MA. Algae as food. In: Wood BJB, ed. Microbiology of fermented foods. 2nd ed. Boston, MA: Thomson Science Boston, MA: Springer; 1997. p. 585-602.
  60. Brown MR, Jeffrey SW, Volkman JK and Dunstan GA. Nutritional properties of microalgae for mariculture. Aquaculture 1997;151:315-331. https://doi.org/10.1016/S0044-8486(96)01501-3
  61. Dore JE, Cysewski GR. Haematococcus algae meal as a source of natural astaxanthin for aquaculture feeds. Cyanotech. Corpor. 2003;1-5.
  62. Lum KK, Kim J, Lei XG. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Animal Sci. Biotechnol. 2013;4:1-7. https://doi.org/10.1186/2049-1891-4-1
  63. Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS. An overview: Biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. (Thessalon.) 2014;21:1-10. https://doi.org/10.1186/2241-5793-21-1
  64. Toyomizu M, Sato K, Taroda H, Kato T, Akiba Y. Effects of dietary Spirulina on meat colour in muscle of broiler chickens. Brit. Poult. Sci. 2001;42:197-202. https://doi.org/10.1080/00071660120048447
  65. Amotz B. Industrial production of microalagal cell-mass and secondary products - Major industrial species Dunaliella. Handbook of microalgal culture biotechnology and applied phycology. BlackWell Publishing Limited, UK; 2004. p. 273-280.
  66. Bruneel C, Lemahieu C, Fraeye I, et al. Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs. J. Funct. Foods 2013;5:897-904. https://doi.org/10.1016/j.jff.2013.01.039
  67. Evans A, Smith D, Moritz J. Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. J. Appl. Poult. Res. 2015;24:206-214. https://doi.org/10.3382/japr/pfv027
  68. Shanmugapriya B, Babu SS, Hariharan T, Sivaneswaran S, Anusha M. Dietary administration of Spirulina platensis as probiotics on growth performance and histopathology in broiler chicks. Int. J. Rec. Sci. Res. 2015;6:2650-2653.
  69. Zahroojian N, Moravej H, Shivazad M. Effects of dietary marine algae (Spirulina platensis) on egg quality and production performance of laying hens. J. Agr. Sci. Technol. 2013;15:1353-1360.
  70. Kang H, Salim H, Akter N, et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J. Appl. Poult. Res. 2013;22:100-108. https://doi.org/10.3382/japr.2012-00622
  71. Zheng L, Oh ST, Jeon JY, et al. The dietary effects of fermented Chlorella vulgaris (CBT$^{(R)}$) on production performance, liver lipids and intestinal microflora in laying hens. Asian-Australas J. Anim. Sci. 2012;25:261-266.
  72. Kotrbacek V, Skrivan M, Kopecky J, et al. Retention of carotenoids in egg yolks of laying hens supplemented with heterotrophic Chlorella. Czech J. Anim. Sci. 2013;58:193-200. https://doi.org/10.17221/6747-CJAS
  73. Lemahieu C, Bruneel C, Termote-Verhalle R, Muylaert K, Buyse J, Foubert I. Impact of feed supplementation with different omega-3 rich microalgae species on enrichment of eggs of laying hens. Food Chem. 2013;141:4051-4059. https://doi.org/10.1016/j.foodchem.2013.06.078
  74. Harel M, Clayton D, Bullis R. Feed formulation for terrestrial and aquatic animals. Patent Pub. No. US 2007/0082008 A1. 2004.
  75. Arora N, Agarwal S, Murthy R. Latest technology advances in cosmaceuticals. Int. J. Pharm. Sci. Drug Res. 2012;4:168-182.
  76. Wang HMD, Chen CC, Huynh P, Chang JS. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015;184:355-362. https://doi.org/10.1016/j.biortech.2014.12.001
  77. Fabrowska J, Leska B, Schroeder G, Messyasz B, Pikosz M. Biomass and extracts of algae as material for cosmetics. In: Kim SK, Chojnacka K, eds. Marine algae extracts. 1st ed. Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 681-706.
  78. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, et al. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013;117:426-436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
  79. Wang HM, Chen CY, Wen ZH. Identifying melanogenesis inhibitors from Cinnamomum subavenium with in vitro and in vivo screening systems by targeting the human tyrosinase. Exp. Dermatol. 2011;20:242-248. https://doi.org/10.1111/j.1600-0625.2010.01161.x
  80. Thomas NV, Kim SK. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 2013;11:146-164. https://doi.org/10.3390/md11010146
  81. Aditya T, Bitu G, Eleanor MG. The role of algae in pharmaceutical development. J. Pharm. Nanotechnol. 2016;4:82-89.
  82. Ariede MB, Candido TM, Jacome ALM, Velasco MVR, de Carvalho JCM, Baby AR. Cosmetic attributes of algae - A review. Algal Res. 2017;25:483-487. https://doi.org/10.1016/j.algal.2017.05.019
  83. Abedin RM, Taha HM. Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Glo. J. Biotechnol. Biochem. 2008;3:22-31.
  84. Herrero M, Castro-Puyana M, Mendiola JA, Ibanez E. Compressed fluids for the extraction of bioactive compounds. Trends Anal. Chem. 2013;43:67-83. https://doi.org/10.1016/j.trac.2012.12.008
  85. Yan N, Fan C, Chen Y, Hu Z. The potential for microalgae as bioreactors to produce pharmaceuticals. Int. J. Mol. Sci. 2016;17:1-24.
  86. Scaife MA, Nguyen J, Rico D, Lambert K, Helliwell E, Smith AG. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J. 2015;82:532-546. https://doi.org/10.1111/tpj.12781
  87. Skjanes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit. Rev. Biotechnol. 2013;33:172-215. https://doi.org/10.3109/07388551.2012.681625
  88. Bhattacharjee M. Pharmaceutically valuable bioactive compounds of algae. Asian J. Pharm. Clin. Res. 2016;9:43-47. https://doi.org/10.22159/ajpcr.2016.v9i6.14507
  89. Santhosh S, Dhandapani R, Hemalatha N. Bioactive compounds from microalgae and its different applications - A review. Adv. Appl. Sci. Res. 2016;7:153-158.
  90. Gouveia L. Microalgae as a feedstock for biofuels. 1st ed. Springer; 2011. p. 1-69.
  91. Wen Z, Johnson MB. Microalgae as a feedstock for biofuel production. Virginia Cooperative Extension publ. 442-880. Virginia, PA: Virginia Polytechnic Institute and State University; 2009.
  92. Wang B, Li Y,Wu N, Lan CQ. $CO_2$ bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 2008;79:707-718. https://doi.org/10.1007/s00253-008-1518-y
  93. Mondal M, Goswami S, Ghosh A, et al. Production of biodiesel from microalgae through biological carbon capture: A review. 3 Biotech 2017;7:1-21.
  94. Chader S, Mahmah B, Chetehouna K, Mignolet E. Biodiesel production using Chlorella sorokiniana a green microalga. Revue Energ. Renouv. 2011;14:21-26.
  95. Kim GV, Choi W, Kang D, Lee S, Lee H. Enhancement of biodiesel production from marine alga, Scenedesmus sp. through in situ transesterification process associated with acidic catalyst. BioMed Res. Int. 2014;2014:391542.
  96. Mata M, Melo A, Meireles S, Mendes A, Martins A, Caetano N. Potential of microalgae Scenedesmus obliquus grown in brewery wastewater for biodiesel production. Chem. Eng. Trans. 2013;32:901-906.
  97. Moser BR. Biodiesel production, properties, and feedstocks. In Vitro Cell. Dev. Biol. Plant 2009;45:229-266. https://doi.org/10.1007/s11627-009-9204-z
  98. Shah GC, Yadav M, Tiwari A. Assessment for the higher production of biodiesel from Scenedesmus dimorphus algal species using different methods. J. Biofuels 2011;2:91-97. https://doi.org/10.5958/j.0976-3015.2.2.005
  99. Shin DY, Cho HU, Utomo JC, Choi YN, Xu X, Park JM. Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Bioresour. Technol. 2015;184:215-221. https://doi.org/10.1016/j.biortech.2014.10.090
  100. Jena J, Nayak M, Panda HS, et al. Microalgae of Odisha coast as a potential source for biodiesel production. World Environ. 2012;2:11-16. https://doi.org/10.5923/j.env.20120202.03
  101. Unpaprom Y, Tipnee S, Ramaraj R. Biodiesel from green alga Scenedesmus acuminatus. Int. J. Sust. Green Energ. 2015;4:1-6.
  102. Shenbaga Devi A, Santhanam P, Rekha V, et al. Culture and biofuel producing efficacy of marine microalgae Dunaliella salina and Nannochloropsis sp. J. Algal Biomass Utln. 2012;3:38-44.
  103. Eman MF, El DM. Fatty acids composition and biodiesel characterization of Dunaliella salina. J. Water Resour. Prot. 2013;5:894-899. https://doi.org/10.4236/jwarp.2013.59091
  104. Abd El Baky HH, El-Baroty GS, Bouaid A. Lipid induction in Dunaliella salina culture aerated with various levels $CO_2$ and its biodiesel production. J. Aquacult. Res. Dev. 2014;5:1-6.
  105. Srinivasakumar K. Biodiesel fuel production from marine microalgae Isochrysis galbana, Pavlova lutheri, Dunaliella salina and measurement of its viscosity and density. Int. J. Mar. Sci. 2013;3:33-35.
  106. Weldy CS, Huesemann M. Lipid production by Dunaliella salina in batch culture: Effects of nitrogen limitation and light intensity. J. Undergraduate Res. 2007;7:115-122.
  107. Ma Y, Wang Z, Yu C, Yin Y, Zhou G. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour. Technol. 2014;167:503-509. https://doi.org/10.1016/j.biortech.2014.06.047
  108. Sohi SMH, Eghdami A. Biodiesel production using marine microalgae Dunaliella salina. J. Biodivers. Environ. Sci. 2014;4:177-182.
  109. Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007;25:294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  110. Hariskos I, Posten C. Biorefinery of microalgae - Opportunities and constraints for different production scenarios. Biotechnol. J. 2014;9:739-752. https://doi.org/10.1002/biot.201300142
  111. Chew KW, Yap JY, Show PL, et al. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017;229:53-62. https://doi.org/10.1016/j.biortech.2017.01.006
  112. Nagarajan D, Lee DJ, Kondo A, Chang AS. Recent insights into biohydrogen production by microalgae - From biophotolysis to dark fermentation. Bioresour. Technol. 2017;227:373-387. https://doi.org/10.1016/j.biortech.2016.12.104
  113. Benemann JR. Hydrogen production by microalgae. J. Appl. Phycol. 2000;12:291-300. https://doi.org/10.1023/A:1008175112704
  114. Shaishav S, Singh R, Satyendra T. Biohydrogen from algae: Fuel of the future. Int. Res. J. Environ. Sci. 2013;2:44-47.
  115. Saifuddin N, Priatharsini P. Developments in bio-hydrogen production from algae: A review. Res. J. Appl. Sci. Eng. Technol. 2016;12:968-982.
  116. Amaro HM, Esquível MG, Pinto TS, Malcata FX. Hydrogen production by microalgae. In: Reza Razeghifard, ed. Natural and artificial photosynthesis: Solar power as an energy source. 1st ed. John Wiley and Sons, Inc.; 2013. p. 231-241.
  117. Chader S, Mahmah B, Chetehouna K, Amrouche F, Abdeladim K. Biohydrogen production using green microalgae as an approach to operate a small proton exchange membrane fuel cell. Int. J. Hydrogen Energ. 2011;36:4089-4093.
  118. Ali I, Rakshit SK, Kanhayuwa L. Biohydrogen production from microalgae of Chlorella sp. In: The International Conference on Sustainable Community Development; 27-29 January 2011; p.74-77.
  119. Guan Y, Deng M, Yu X, Zhang W. Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochem. Eng. J. 2004;19:69-73. https://doi.org/10.1016/j.bej.2003.10.006
  120. Kumari S, Nasr M, Kumar S. Technological advances in biohydrogen production from microalgae. In: Gupta SK, Malik A, Bux F, eds. Algal biofuels: Recent advances and future prospects. Durban: Springer International Publishing; 2017. p. 347-360.
  121. Chiaramonti D. Bioethanol: Role and production technologies. In: Ranalli P, ed. Improvement of crop plants for industrial end uses. 1st ed. Netherlands: Dordrecht: Springer; 2007. p. 209-251.
  122. Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 2010;85:199-203.
  123. Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Prog. Energ. Combust. Sci. 2011;37:52-68. https://doi.org/10.1016/j.pecs.2010.01.003
  124. Hirano A, Ueda R, Hirayama S, Ogushi Y. $CO_2$ fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 1997;22:137-142. https://doi.org/10.1016/S0360-5442(96)00123-5
  125. Ueno Y, Kurano N, Miyachi S. Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J. Ferment. Bioeng. 1998;86:38-43. https://doi.org/10.1016/S0922-338X(98)80031-7
  126. Hirayama S, Ueda R, Ogushi Y, et al. Ethanol production from carbon dioxide by fermentative microalgae. Stud. Surf. Sci. Catal. 1998;114:657-660.
  127. Ho SH, Li PJ, Liu CC, Chang JS. Bioprocess development on microalgae-based $CO_2$ fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour. Technol. 2013;145:142-149. https://doi.org/10.1016/j.biortech.2013.02.119
  128. Harun R, Danquah MK. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem. 2011;46:304-309. https://doi.org/10.1016/j.procbio.2010.08.027
  129. Markou G, Angelidaki I, Nerantzis E, Georgakakis D. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 2013;6:3937-3950. https://doi.org/10.3390/en6083937
  130. John RP, Anisha GS, Nampoothiri KM, Pandey A. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 2011;102:186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  131. Anand P, Tiwari A, Mishra RM, Awasthi S. Production of algae biofertilizers for rice crop (Oryza sativa) to safe human health & environment as a supplement to the chemical fertilizers. J. Sci. 2015;5:13-15.
  132. Abdel-Raouf N, Al-Homaidan A, Ibraheem I. Agricultural importance of algae. Afr. J. Biotechnol. 2012;11:11648-11658.
  133. Song T, Mårtensson L, Eriksson T, Zheng W, Rasmussen U. Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiol. Ecol. 2005;54:131-140. https://doi.org/10.1016/j.femsec.2005.03.008
  134. Garcia-Gonzalez J, Sommerfeld M. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J. Appl. Phycol. 2016;28:1051-1061. https://doi.org/10.1007/s10811-015-0625-2
  135. Faheed FA, Fattah ZA. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J. Agr. Soc. Sci. (Pak.). 2008;4:165-169.
  136. Renuka N, Prasanna R, Sood A, et al. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ. Sci. Pollut. Res. 2016;23:6608-6620. https://doi.org/10.1007/s11356-015-5884-6
  137. Dineshkumar R, Subramanian J, Gopalsamy J, et al. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste Biomass Valori. 2017:1-10.
  138. Gonzalez-Delgado AD, Kafarov V. Microalgae based biorefinery: Issues to consider. C.T.F Cienc. Tecnol. Futuro 2011;4:5-22.

Cited by

  1. Advances and challenges in genetic engineering of microalgae pp.17535123, 2020, https://doi.org/10.1111/raq.12322
  2. Enhancing production of microalgal biopigments through metabolic and genetic engineering pp.1549-7852, 2020, https://doi.org/10.1080/10408398.2018.1533518
  3. Development of a Green Downstream Process for the Valorization of Porphyridium cruentum Biomass vol.24, pp.8, 2018, https://doi.org/10.3390/molecules24081564
  4. Microalgal Enzymes with Biotechnological Applications vol.17, pp.8, 2018, https://doi.org/10.3390/md17080459
  5. Scenedesmus obliquusmicroalga‐based biorefinery - from brewery effluent to bioactive compounds, biofuels and biofertilizers - aiming at a circular bioeconomy vol.13, pp.5, 2019, https://doi.org/10.1002/bbb.2032
  6. Statistical Approach of Nutrient Optimization for Microalgae Cultivation vol.141, pp.None, 2018, https://doi.org/10.1051/e3sconf/202014103009
  7. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids vol.11, pp.1, 2020, https://doi.org/10.1080/21655979.2020.1711626
  8. Nutrient recovery from tofu whey wastewater for the economical production of docosahexaenoic acid by Schizochytrium sp. S31 vol.710, pp.None, 2020, https://doi.org/10.1016/j.scitotenv.2019.136448
  9. Marine Microalgae Biomolecules and Their Adhesion Capacity to Salmonella enterica sv. Typhimurium vol.10, pp.7, 2018, https://doi.org/10.3390/app10072239
  10. Extremophile Microalgae: the potential for biotechnological application vol.56, pp.3, 2020, https://doi.org/10.1111/jpy.12965
  11. A review of high value-added molecules production by microalgae in light of the classification vol.41, pp.None, 2018, https://doi.org/10.1016/j.biotechadv.2020.107545
  12. Boosting effects of Spirulina platensis , whey protein, and probiotics on the growth of microflora and the nutritional value of ayran vol.2, pp.9, 2020, https://doi.org/10.1002/eng2.12235
  13. Potential of Chlorella Species as Feedstock for Bioenergy Production: A Review vol.24, pp.2, 2018, https://doi.org/10.2478/rtuect-2020-0067
  14. Towards green extraction methods from microalgae learning from the classics vol.104, pp.21, 2020, https://doi.org/10.1007/s00253-020-10839-x
  15. Pathways to economic viability: a pilot scale and techno-economic assessment for algal bioremediation of challenging waste streams vol.6, pp.12, 2018, https://doi.org/10.1039/d0ew00700e
  16. Semi-quantitative determination of ash element content for freeze-dried, defatted, sulfated and pyrolysed biomass of Scenedesmus sp. vol.13, pp.None, 2018, https://doi.org/10.1186/s13068-020-01699-8
  17. Harvested Microalgal Biomass from Different Water Treatment Facilities-Its Characteristics and Potential Use as Renewable Sources of Plant Biostimulation vol.10, pp.12, 2018, https://doi.org/10.3390/agronomy10121882
  18. Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development-Advantages and Limitations vol.12, pp.23, 2020, https://doi.org/10.3390/su12239980
  19. Defense Mechanism of the Eared Horse Mussel Modiolus auriculatus (Krauss, 1848) (Bivalvia - Mytilidae) with Emphasis on its Associated Microbial Diversity vol.14, pp.2, 2018, https://doi.org/10.3923/ajsr.2021.67.81
  20. Establishment of a Genome Editing Tool Using CRISPR-Cas9 in Chlorella vulgaris UTEX395 vol.22, pp.2, 2021, https://doi.org/10.3390/ijms22020480
  21. Isolation of Industrial Important Bioactive Compounds from Microalgae vol.26, pp.4, 2018, https://doi.org/10.3390/molecules26040943
  22. Optimizing Docosahexaenoic Acid (DHA) Production by Schizochytrium sp. Grown on Waste Glycerol vol.14, pp.6, 2021, https://doi.org/10.3390/en14061685
  23. Prospects of Microalgae for Biomaterial Production and Environmental Applications at Biorefineries vol.13, pp.6, 2018, https://doi.org/10.3390/su13063063
  24. The role of microalgae in the bioeconomy vol.61, pp.None, 2021, https://doi.org/10.1016/j.nbt.2020.11.011
  25. Antioxidant Production in Dunaliella vol.11, pp.9, 2018, https://doi.org/10.3390/app11093959
  26. Recent advances in the integrated biorefinery concept for the valorization of algal biomass through sustainable routes vol.15, pp.3, 2018, https://doi.org/10.1002/bbb.2187
  27. Microalgal Cell Biofactory-Therapeutic, Nutraceutical and Functional Food Applications vol.10, pp.5, 2021, https://doi.org/10.3390/plants10050836
  28. Enhancement of pigments production in the green microalga Dunaliella salina (PSBDU05) under optimized culture condition vol.14, pp.None, 2021, https://doi.org/10.1016/j.biteb.2021.100672
  29. Lutein and biodiesel sequential production from microalga using an environmentally friendly approach vol.208, pp.7, 2021, https://doi.org/10.1080/00986445.2020.1722654
  30. “Beyond the Source of Bioenergy”: Microalgae in Modern Agriculture as a Biostimulant, Biofertilizer, and Anti-Abiotic Stress vol.11, pp.8, 2021, https://doi.org/10.3390/agronomy11081610
  31. Enhancement of Pigments Production by Nannochloropsis oculata Cells in Response to Bicarbonate Supply vol.13, pp.21, 2018, https://doi.org/10.3390/su132111904
  32. Effect of medium type, light intensity, and photoperiod on the growth rate of microalgae Chlorococcum sp. local isolate vol.913, pp.1, 2021, https://doi.org/10.1088/1755-1315/913/1/012071
  33. Comparative Response of Marine Microalgae to H2O2-Induced Oxidative Stress vol.193, pp.12, 2021, https://doi.org/10.1007/s12010-021-03690-x
  34. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production vol.806, pp.p3, 2018, https://doi.org/10.1016/j.scitotenv.2021.151387