DOI QR코드

DOI QR Code

Effect of Steviol β-Glucopyranosyl Ester on The Production of Nitric Oxide and Inflammatory Cytokines in RAW 264.7 Cells

Steviol β-Glucopyranosyl Ester가 RAW 264.7 세포의 산화질소 및 염증성 사이토카인 생성에 미치는 영향

  • Jung, Heehoon (R&D center, Macrocare Tech Co., Ltd.) ;
  • Cho, Uk Min (School of Cosmetic Science and Beauty Biotechnology) ;
  • Hwang, Hyung Seo (School of Cosmetic Science and Beauty Biotechnology) ;
  • Cho, Kun (Biomedical Omics Team, Korea Basic Science Institute (KBSI)) ;
  • Lee, Sang Rin (R&D center, Macrocare Tech Co., Ltd.) ;
  • Kim, Moo Sung (R&D center, Macrocare Tech Co., Ltd.)
  • 정희훈 ((주)마크로케어 부설연구소) ;
  • 조욱민 (세명대학교 한방화장품과학과) ;
  • 황형서 (세명대학교 한방화장품과학과) ;
  • 조건 (한국기초과학지원연구원 생의학오믹스연구부) ;
  • 이상린 ((주)마크로케어 부설연구소) ;
  • 김무성 ((주)마크로케어 부설연구소)
  • Received : 2018.05.29
  • Accepted : 2018.09.04
  • Published : 2018.09.30

Abstract

Chronic inflammation is known to have effects on various diseases such as gout, cancer, dementia, atopic disease, and obesity. In addition, since some signal cascades involved in the development of inflammation are known to affect the damage and aging of the skin tissue, studies are being conducted actively to control the inflammation mechanism. In order to mitigate or prevent inflammatory response, a number of researches have been made to develop anti-inflammatory materials from some plants. In particular, Stevia rebaudiana produces steviol glycosides (SG), a natural sweetener with a distinctive flavor. Studies on some of SG have been shown to have anti-inflammatory activity. Researchers of this study expected that more SG also possess anti-inflammatory activity, besides stevioside, rebaudioside A, and steviol. In order to confirm this possibility, the researchers screened inhibition activity of various steviol glucosides for NO production in RAW 264.7 cell lines. As a result, steviol ${\beta}-glucopyranosyl$ ester (SGE) showed the highest inhibitory activity among steviol derivatives treated at the same molar concentration. In addition, we found that mRNA expression level of $interleukin-1{\alpha}$ ($IL-1{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), cyclooxygenase-2 (COX-2), nuclear factor kappa-light chain-enhancer of activated B cells ($NF-{\kappa}B$) and inducible nitric oxide synthase (iNOS) was also decreased in a dose-dependent manner. These results show that SGE inhibits anti-inflammatory activity and NO production in mouse macrophage RAW 264.7 cells. It was confirmed that SGE has potential to be applied as an anti-inflammatory material.

만성적인 염증은 낭포성 섬유증, 암, 치매, 아토피성 질환, 비만 등과 같은 염증성 질환의 원인이 된다. 또한 염증의 발생단계에 관여하는 일부 신호물질은 피부조직의 손상과 노화에도 영향을 주는 것으로 알려져 있기 때문에 염증발생 매커니즘을 조절하기 위한 연구가 활발하게 이루어지고 있다. 최근에는 염증반응을 억제하거나 예방하기 위해, 몇몇 식물로부터 항염증 소재를 개발하려는 연구들이 이루어지고 있다. 특히 Stevia rebaudiana는 특유의 풍미를 가지는 천연감미료 스테비올배당체(steviol glycoside, SG)를 생성하는데, 일부 SG에 대한 연구를 통해 염증억제 활성이 있는 것으로 알려져 있다. 본 연구에서는 기존연구를 통해 항염증 효능이 있는 것으로 확인된 스테비오사이드, 리버디오사이드 A, 스테비올 이외에도 항염증 소재로 활용될 가능성이 있는 SG가 더 존재할 것으로 예상하였다. 이를 확인하기 위하여 우리는 S. rebaudiana에서 얻은 SG의 nitric oxide(NO) 생성억제활성을 RAW 264.7 세포주를 대상으로 스크리닝 하였다. 그 결과 steviol ${\beta}-glucopyranosyl$ ester (SGE)가 동일한 농도 조건의 SG 중에서 가장 높은 억제활성을 보여주었다. 또한, $interleukin-1{\alpha}$ ($IL-1{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), cyclooxygenase-2 (COX-2), nuclear factor kappa-light chain-enhancer of activated B cells ($NF-{\kappa}B$), inducible nitric oxide synthase (iNOS)와 같은 염증관련 인자의 mRNA 발현량 또한 농도의존적으로 감소시키는 것으로 확인되었다. 이러한 연구결과를 통해 SGE는 마우스 대식세포인 RAW 264.7 세포에서 항염증 활성 및 NO 생성 억제 효과가 있음을 확인하였다. 이를 통하여 SGE가 항염증 소재로 활용될 잠재성이 있음을 확인하였다.

Keywords

References

  1. J. Brown and R. Dubois, COX-2: a molecular target for colorectal cancer prevention, J. Clin. Oncol., 23, 2840 (2005). https://doi.org/10.1200/JCO.2005.09.051
  2. L. Marnett and R. DuBois, COX-2: a target for colon cancer prevention, Annu. Rev. Pharmacol. Toxicol., 42(1), 55 (2002). https://doi.org/10.1146/annurev.pharmtox.42.082301.164620
  3. P. Wojdasiewicz, A. Poniatowski, and D. Szukiewicz, The role of inflammatory and anti-inflammatory cyto kines in the pathogenesis of osteoarthritis, Mediat. Inflamm., Article ID 561459, 1 (2014).
  4. S. Shin, E. Jung, S. Kim, J. Kim, E. Kim, J. Lee, and D. Park, Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage, PLoS ONE, 8(4), e61971 (2013). https://doi.org/10.1371/journal.pone.0061971
  5. J. Lim, H. Kim, and K. Kim, Nuclear factor-kappa B regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells, Lab Invest., 81(3), 349 (2001). https://doi.org/10.1038/labinvest.3780243
  6. D. Arias-Salvatierra, E. Silbergeld, L. Acosta-Saavedra, and E. Calderon-Aranda, Role of nitric oxide produced by iNOS through NF-${\kappa}B$ pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide, Cell Signal, 23(2), 425 (2011). https://doi.org/10.1016/j.cellsig.2010.10.017
  7. T. Rhen and J. Cidlowski, Antiinflammatory action of glucocorticoids-new mechanisms for old drugs, New Engl. J. Med., 353, 1711 (2005). https://doi.org/10.1056/NEJMra050541
  8. F. Buttgereit, G. Burmester, and B. Lipworth, Glucocorticoids and risk of cardiovascular disease, Nat. Clin. Pract. Rheumatol., 5, 18 (2009).
  9. H. Awney, M. Massoud, and S. El-Maghrabi, Long-term feeding effects of stevioside sweetener on some toxicological parameters of growing male rats, J. Appl. Toxicol., 31, 431 (2011). https://doi.org/10.1002/jat.1604
  10. J. Geuns, P. Augustijns, R. Mols, J. Buyse, and B. Driessen, Metabolism of stevioside in pigs and intestinal absorption characteristics of stevioside, rebaudioside A and steviol, Food Chem. Toxicol., 41, 1599 (2003). https://doi.org/10.1016/S0278-6915(03)00191-1
  11. P. Chan, B. Tomlinson, Y. Chen, J. Liu, M. Hsieh, and J. Cheng, A double blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension, British J. Clin. Pharmacol., 50, 215 (2000).
  12. C. Boonkaewwan and A. Burodom, Anti-inflammatory and immunomodulatory activities of stevioside and steviol on colonic epithelial cells, J. Sci. Food. Agric., 93, 3820 (2013). https://doi.org/10.1002/jsfa.6287
  13. C. Lee, K. Wong, J. Liu, Y Chen, J. Cheng, and P. Chan, Inhibitory effect of stevioside on calcium influx to produce antihypertension, Planta Med., 67, 796 (2001). https://doi.org/10.1055/s-2001-18841
  14. Y. Xi, T. Yamaguchi, M. Sato, and M. Takeuch, Antioxidant mechanism of Stevia rebaudiana extract and antioxidant activity of inorganic salts, Nippon Kagaku Kaishi, 45, 317 (1998). https://doi.org/10.3136/nskkk.45.317
  15. P. Jeppesen, S. Gregersen, K. Alsrupp, and K. Hermansen, Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats, Phytomedicine, 9, 9 (2002). https://doi.org/10.1078/0944-7113-00081
  16. T. Konoshima and M. Takasaki, Cancer-chemopreventive effects of natural sweeteners and related compounds, Pure Appl. Chem., 74, 1309 (2002). https://doi.org/10.1351/pac200274071309
  17. U. S. Patent 14, 368, 212 (1978).
  18. E. Yildiz-Ozturk, A. Nalbantsoy, O. Tag, and O. Yesil-Celiktas, A comparative study on extraction processes of Stevia rebaudiana leaves with emphasis on antioxidant, cytotoxic and nitric oxide inhibition activities, Ind. Crops Prod., 77, 961 (2015). https://doi.org/10.1016/j.indcrop.2015.10.010
  19. L. Fengyang, F. Yunhe, L. Bo, L. Zhicheng, L. Depeng, L. Edjie, Z. Wen, C. Yongguo, Z. Naisheng, Z. Xichen, and Y. Zhengtao, Stevioside suppressed inflammatory cytokine secretion by downregulation of NF-${\kappa}B$ and MAPK signaling pathways in LPS-stimulated RAW 264.7 cells, Inflamm., 35(5), 1669 (2012). https://doi.org/10.1007/s10753-012-9483-0
  20. T. Wang, M. Guo, X. Song, Z. Zhang, H. Jiang, W. Wang, Y. Fu, Y. Cao, L. Zhu, and N. Zhang, Stevioside plays an anti-inflammatory role by regulating the NF-${\kappa}B$ and MAPK pathways in S. aureus-infected mouse mammary glands, Inflamm., 37(5), 1837 (2014). https://doi.org/10.1007/s10753-014-9915-0
  21. U. Cho and H. Hwang, Anti-inflammatory effects of rebaudioside A in LPS-stimulated RAW 264.7 macrophage cells, J. soc. cosmet. scientists Korea, 43(2), 157 (2017). https://doi.org/10.15230/SCSK.2017.43.2.157
  22. V. Chaturvedula and I. Prakash, Acid and alkaline hydrolysis studies of stevioside and rebaudioside A, J. App. Pharm. Sci., 1(8), 104 (2011).
  23. G. Kaur, V. Pandhair, and G. Cheema, Extraction and characterization of steviol glycosides from Stevia rebaudiana Bertoni leaves, J. Med. Plants Studies, 2(5), 41 (2014).
  24. M. Ishiyama, Y. Miyazono, K. Sasamoto, Y. Ohkura, and K. Ueno, A highly water-soluble disulfonated tet razolium salt as a chromogenic indicator for NADH as well as cell viability, Talanta, 44(7), 1299 (1997). https://doi.org/10.1016/S0039-9140(97)00017-9
  25. L. Green, D. Wagner, J. Glogowski, P. Skipper, J. Wishnok, and S. Tannenbaum, Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids, Anal. Biochem., 126(1), 131 (1982). https://doi.org/10.1016/0003-2697(82)90118-X
  26. N. Ishimura, S. Bronk, and G. Gores, Inducible nitric oxide synthase upregulates cyclooxygenase-2 in mouse cholangiocytes promoting cell growth, Am. J. Physiol. Gastrointest. Liver Physiol., 287(1), G88 (2004). https://doi.org/10.1152/ajpgi.00539.2003