DOI QR코드

DOI QR Code

Quantitative Analysis for the Amount of Coacervate in a Shampoo Formulation

샴푸 코아세르베이트 정량 분석법

  • Received : 2018.06.21
  • Accepted : 2018.09.04
  • Published : 2018.09.30

Abstract

This study attempts to quantify amount of coacervate generated in a formulation of shampoo with three methods using optical transmission, suspension in a glass tube, and centrifugation. For the correct data acquisition, each method has been optimized to estimate the amount of coacervate with minimum standard deviation. To simply and quantitatively estimate amount of coacervate, two formulations of shampoo were employed as a large or small amount of coacervate generated. Comparisons of the two formulations in repetitive measurement elucidated that the methods by the centrifugation efficiently can be utilized to estimate the accurate amount of coacervate. Additionally, the amount of coacervate by the centrifugation does not exhibit the difference of patterns before and after drying in a shampoo formulation with different conditioning polymers, and this suggests that the centrifugation is a superior method to compare amount of coacervate in liquid.

본 연구에서는 투과도 평가법, 유리관 정치법과 원심분리 평가법을 통해 샴푸의 코아세르베이트 생성량을 정량화하는 시도를 하였으며, 각 방법의 수행 조건을 달리하여 값의 정확성을 높이고 편차를 적게 하는 가장 최적의 조건을 구해서 평가법의 표준화를 확립하였다. 코아세르베이트가 많이 생성되는 샘플과 적게 생성되는 샘플을 선정하여 서로 비교하여 검증한 결과, 다양한 조건에서의 투과도 값 및 원심분리 값에 대한 재현성과 유의차를 확보하였다. 이를 바탕으로 원심분리법은 빠르고 적은 편차로 코아세르베이트 생성량을 평가할 수 있는 평가법임을 결론내릴 수 있었으며, 건조잔량분과 수분을 포함한 코아세르베이트의 폴리머간 생성 패턴 차이가 없음도 발견하여 액상 상태로 코아세르베이트 함량을 평가할 수 있는 편리한 평가법임을 발견하였다.

Keywords

References

  1. E. Desmond Goddard, T. S. Phillips, and R. B. Hannan, Water soluble polymer-surfactant interaction part I, J. Soc. Cosmet. Chem., 26(9), 461 (1975).
  2. J. A. Faucher, E. D. Goddard, and R. B. Hannan, Sorption and desorption of a cationic polymer by human hair : effect of salt solutions, Textile Res. J., 47(9), 616 (1977). https://doi.org/10.1177/004051757704700906
  3. Y. K. Kamath, C. J. Dansizer, and H. D. Weigmann, Surface wettability of human hair. III. Role of surfactants in the surface deposition of cationic polymers, J. Appl. Polymer Sci., 30(3), 1 (1985). https://doi.org/10.1002/app.1985.070300101
  4. H. G. Bungenberg de Jong, Colloid Science, ed. H. R. Kruyt, Elsevier publishing co. Inc, Amsterdam, 335 (1949).
  5. J. Caelles, F. Comelles, J. S. Leal, J. L. Parra, and S. Anguera, Anionic and cationic compounds in mixed systems, Cosmet. & Toil., 106, April (1991).
  6. E. D. Goddard, P. S. Leung, and K. P. A. Padmanabhan, Novel gelling structures based on polymer/surfactant systems, J. Soc. Cosmet. Chem., 42(1), 19 (1991).
  7. R. L. Schmitt, B. Brook, E. D. Goddard, and A. Edison, Investigation into the adsorption of cationic polymers, Cosmet. Toil., 109, 1 (1994).
  8. P. Hoessel, R. Dieing, R. Noernberg, A. Pfau, and R. Sander, Conditioning polymers in today's shampoo formulations - efficacy, mechanism and test method, International J. Cosmet. Sci., 22, 1 (2000). https://doi.org/10.1046/j.1467-2494.2000.00003.x
  9. M. Gamez-Garcia, Controlling the deposition of insoluble actives to hair from shampoo systems, Personal Care, May (2002).
  10. S. Chiron, Performance and sensorial benefits of cationic guar in hair care applications, Cosmet. Toil., 119, February (2004).
  11. Y. Hiwatari, K. Yoshida, T. Akutsu, M. Yabu, and S. I. Polyelectrolyte, Micelle coacervation - effect of coacervate on the properties of shampoo, J. Soc. Cosmet. Chem. Japan., 26(6), 316 (2004).
  12. E. Terada, Y. Samoshina, T. Nylander, and B. Lindman, Adsorption of cationic cellulose derivatives/anionic surfactant complexes onto solid surface. I. Silica surfaces, Langmuir, 20(5), 1753 (2004). https://doi.org/10.1021/la035626s
  13. E. Terada, Y. Samoshina, T. Nylander, and B. Lindman, Adsorption of cationic cellulose derivatives/anionic surfactant complexes onto solid surface. II. Hydrophobized silica surfaces, Langmuir, 20(16), 6692 (2004). https://doi.org/10.1021/la049922w
  14. F. E. Antunes, E. F. Marques, R. Gomes, K. Thuresson, B. Lindman, and M. G. Miguel, Network formation of cationic vesicles and oppositely charged polyelectrolytes. Effect of polymer charge density and hydrophobic modification, Langmuir, 20(11), 4647 (2004). https://doi.org/10.1021/la049783i
  15. S. Zhou, C. Xu, J. Wang, P. Golas, and J. Batteas, Phase behavior of cationic hydroxyethyl cellulose-sodium dodecyl sulfate mixtures: effect of molecular weight and ethylene oxide side chain length of polymers, Langmuir, 20(20), 8482 (2004). https://doi.org/10.1021/la049142n
  16. C. Goh, New cationic conditioning polymers for hair care, Asia Pac. Personal Care, September (2005).
  17. R. Y. Lochhead and L. R. Huisinga, A brief review of polymer/surfactant interaction, Cosmet. Toiletries, 119(2), February (2005).
  18. R. Y. Lochhead and L. R. Huisinga, Advances in polymers for hair conditioning shampoos, Cosmet. Toil., 120(5), May (2005).
  19. C. Lepilleur, J. Mullay, C. Kyer, P. McCalister, and T. Clifford, Use of statistical modeling to predict the effect of formulation composition on coacervation, silicone deposition, and conditioning sensory performance of cationic cassia polymers, J. Cosmet. Sci., 62, 161 (2011).
  20. M. W. Liberatore, N. B. Wyatt, and M. Henry, Shear-induced phase separation in polyelectrolyte/mixed micelle coacervates, Langmuir, 25(23), 13376 (2009). https://doi.org/10.1021/la903260r
  21. L. A. Wilgus, K. Davis, L. Labeaud, L. Gandolfi, and R. Y. Lochhead, A study of the distribution of polymer/surfactant coacervate between solution and foamin archetypal shampoo systems, J. Cosmet. Sci., 62,179 (2011).