DOI QR코드

DOI QR Code

냉매사이클과 열매체유 순환을 활용한 액화공기에너지저장 시스템 공정모사 연구

Simulation Study on Liquid Air Energy Storage (LAES) System using Dual Refrigeration Cycles and Thermal Oil Circulation

  • Jang, Soonnam (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Park, Jongpo (Plant Engineering Center, Institute for Advanced Engineering)
  • 투고 : 2018.05.07
  • 심사 : 2018.08.23
  • 발행 : 2018.08.31

초록

잉여전력 등을 활용한 에너지저장시스템 분야에 기술에 관심이 집중되고 혁신적인 기술진보가 이루어지고 있다. 다양한 에너지저장시스템 분야 중 가스액화 방식을 활용한 액화공기에너지저장 시스템은 상당히 성숙된 기술로 알려져 있고, 높은 단위 에너지 밀도와 설치에 따른 지형적 제약이 거의 없으며 수명이 긴 저장 시스템이라는 많은 장점에도 불구하고, 단일공정 (공기액화-재기화 사이클)의 낮은 사이클 효율로 인해 상업화에 한계가 있었다. 본 연구에서는 낮은 사이클 효율을 개선하고자 2종류의 냉매(R-600a 와 메탄올)을 이용한 냉매사이클을 공기 액화 공정에 활용하여 사이클 효율을 향상시키고, 공기 압축시 발생하는 압축열을 열매체유 순환 사이클에 이용하여 이를 액화공기 재기화 공정의 터빈 입구 온도를 높이는데 활용하여 전력생산량을 추가적으로 증가시킴으로써 사이클 효율을 획기적으로 향상시킬 수 있는 가능성을 Aspen HYSYS 공정 모사 프로그램을 활용하여 확인하였다.

Innovative technical process for Energy Storage System (ESS), Liquid Air Energy Storage system (LAES) is mature technologies based on the gas liquefaction process. In spite of many advantages such as high energy density, no geographical constraints, low investment costs and long useful life, the system has not yet widely commercialized due to low round trip efficiency. To improve RTE and acquire high yield of liquid air, various configurations of LAES process have been considered. In this research, dual refrigerants cycle (R-600a and methanol) for air liquefaction and thermal oil circulation for power generation via liquid air gasification have been applied to improve cycle performance significantly using Aspen HYSYS simulator.

키워드

참고문헌

  1. Giuseppe Leo Guizzi et al, Thermodynamic analysis of a liquid air energy storage system, Energy, 93, 1639-1647 (2015) https://doi.org/10.1016/j.energy.2015.10.030
  2. Report for Energy Storage System, Korea Development Bank, 2015
  3. Highview Power Storage; 2016. .
  4. Liquid Air in the energy and transport systems. The Centre for Low Carbon. http://bit.ly/liquid-air-full-report-2013
  5. Xiaohui She et al, Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression, Applied Energy, 206,1632-1642 (2017) https://doi.org/10.1016/j.apenergy.2017.09.102
  6. Piotr Krawczyk et al, Comparative thermodynamic analysis of compressed air and liquid air energy storage systems, Energy, 142, 46-54 (2018) https://doi.org/10.1016/j.energy.2017.07.078
  7. Marco Antonelli et al, Liquid air energy storage: Potential and challenges of hybrid power plants, Applied Energy, 194, 522-529 (2017) https://doi.org/10.1016/j.apenergy.2016.11.091
  8. S.X.Wang et al, The application of cryogens in liquid fluid energy storage systems, Physics Procedia, 67, 728-732 (2015) https://doi.org/10.1016/j.phpro.2015.06.123
  9. Abdalqader Ahmad et al, Air conditioning and power generation for residential applications using liquid nitrogen, Applied Energy, 184, 630-640 (2016) https://doi.org/10.1016/j.apenergy.2016.11.022
  10. HYSYS A. Version 8.8. Aspen Technol Inc; 2016
  11. Farzad Abdollahi-Demneh et al, Calculating exergy in flowsheeting simulators: A HYSYS implementation, Energy, 36, 5320-5327 (2011) https://doi.org/10.1016/j.energy.2011.06.040
  12. Mehmet Kanoglu et al, Performance analysis of gas liquefaction cycles, Int. J. Energy Res. 32, 35-43 (2008) https://doi.org/10.1002/er.1333
  13. Adriano Sciacovellia*, Daniel Smitha, Helena Navarroa , Yongliang Lia, Yulong Ding, Liquid air energy storage - Operation and performance of the first pilot plant in the world, Proceeding of ECOS 2016 - The 29th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, June 19-23, Portoroz, Slovenia (2016)
  14. Robert Morgan et al, Liquid air energy storage - Analysis and first results from a pilot scale demonstration plant, Applied Energy, 137, 845-853 (2015) https://doi.org/10.1016/j.apenergy.2014.07.109

피인용 문헌

  1. 액화 공기 에너지 저장 기술(LAES)의 경제성 분석 vol.16, pp.1, 2020, https://doi.org/10.7849/ksnre.2020.2031
  2. Evaluation of various large-scale energy storage technologies for flexible operation of existing pressurized water reactors vol.53, pp.8, 2021, https://doi.org/10.1016/j.net.2021.02.023