DOI QR코드

DOI QR Code

Evaluation of the marginal and internal fit of a single crown fabricated based on a three-dimensional printed model

  • Jang, Yeon (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University) ;
  • Sim, Ji-Young (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University) ;
  • Park, Jong-Kyoung (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University) ;
  • Kim, Woong-Chul (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University) ;
  • Kim, Hae-Young (Department of Public Health Sciences, Graduate School, Korea University) ;
  • Kim, Ji-Hwan (Department of Dental Laboratory Science and Engineering, College of Health Science, Korea University)
  • Received : 2018.01.23
  • Accepted : 2018.09.29
  • Published : 2018.10.31

Abstract

PURPOSE. To evaluate the fit of a crown produced based on a 3D printed model and to investigate its clinical applicability. MATERIALS AND METHODS. A master die was fabricated with epoxy. Stone dies were fabricated from conventional impressions (Conventional stone die group: CS, n=10). Digital virtual dies were fabricated by making digital impressions (Digital Virtual die group: VD, n=10). 3D data obtained from the digital impression was used to fabricate 3D printed models (DLP die group: DD, n=10, PolyJet die group: PD, n=10). A total of 40 crowns were fabricated with a milling machine, based on CS, VD, DD and PD. The inner surface of all crowns was superimposed with the master die files by the "Best-fit alignment" method using the analysis software. One-way and 2-way ANOVA were performed to identify significant differences among the groups and areas and their interactive effects (${\alpha}=.05$). Tukey's HSD was used for post-hoc analysis. RESULTS. One-way ANOVA results revealed a significantly higher RMS value in the 3D printed models (DD and PD) than in the CS and DV. The RMS values of PD were the largest among the four groups. Statistically significant differences among groups (P<.001) and between areas (P<.001) were further revealed by 2-way ANOVA. CONCLUSION. Although the fit of crowns fabricated based on the 3D printed models (DD and PD) was inferior to that of crowns prepared with CS and DV, the values of all four groups were within the clinically acceptable range (<$120{\mu}m$).

Keywords

References

  1. van Noort R. The future of dental devices is digital. Dent Mater 2012;28:3-12. https://doi.org/10.1016/j.dental.2011.10.014
  2. Yau HT, Yang TJ, Lin YK. Comparison of 3-D printing and 5-axis milling for the production of dental e-models from intra-oral scanning. Comput Aided Des Appl 2016;13:32-8. https://doi.org/10.1080/16864360.2015.1059186
  3. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989;62:405-8. https://doi.org/10.1016/0022-3913(89)90170-4
  4. Cho SH, Schaefer O, Thompson GA, Guentsch A. Comparison of accuracy and reproducibility of casts made by digital and conventional methods. J Prosthet Dent 2015;113:310-5. https://doi.org/10.1016/j.prosdent.2014.09.027
  5. Ueda K, Beuer F, Stimmelmayr M, Erdelt K, Keul C, Güth JF. Fit of 4-unit FDPs from CoCr and zirconia after conventional and digital impressions. Clin Oral Investig 2016;20:283-9. https://doi.org/10.1007/s00784-015-1513-5
  6. Fransson B, Oilo G, Gjeitanger R. The fit of metal-ceramic crowns, a clinical study. Dent Mater 1985;1:197-9. https://doi.org/10.1016/S0109-5641(85)80019-1
  7. Karlsson S. The fit of Procera titanium crowns. An in vitro and clinical study. Acta Odontol Scand 1993;51:129-34. https://doi.org/10.3109/00016359309041158
  8. Hwang YC, Park YS, Kim HK, Hong YS, Ahn JS, Ryu JJ. The evaluation of working casts prepared from digital impressions. Oper Dent 2013;38:655-62. https://doi.org/10.2341/12-352-L
  9. Pfeiffer J. Dental CAD/CAM technologies: the optical impression (I). Int J Comput Dent 1998;1:29-33.
  10. Sun J, Zhang FQ. The application of rapid prototyping in prosthodontics. J Prosthodont 2012;21:641-4. https://doi.org/10.1111/j.1532-849X.2012.00888.x
  11. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J 2015;219:521-9. https://doi.org/10.1038/sj.bdj.2015.914
  12. Schaefer O, Kuepper H, Thompson GA, Cachovan G, Hefti AF, Guentsch A. Effect of CNC-milling on the marginal and internal fit of dental ceramics: a pilot study. Dent Mater 2013;29:851-8. https://doi.org/10.1016/j.dental.2013.04.018
  13. Anadioti E, Aquilino SA, Gratton DG, Holloway JA, Denry I, Thomas GW, Qian F. 3D and 2D marginal fit of pressed and CAD/CAM lithium disilicate crowns made from digital and conventional impressions. J Prosthodont 2014;23:610-7. https://doi.org/10.1111/jopr.12180
  14. Anadioti E, Aquilino SA, Gratton DG, Holloway JA, Denry IL, Thomas GW, Qian F. Internal fit of pressed and computer-aided design/computer-aided manufacturing ceramic crowns made from digital and conventional impressions. J Prosthet Dent 2015;113:304-9. https://doi.org/10.1016/j.prosdent.2014.09.015
  15. Keating AP, Knox J, Bibb R, Zhurov AI. A comparison of plaster, digital and reconstructed study model accuracy. J Orthod 2008;35:191-201. https://doi.org/10.1179/146531207225022626
  16. Schaefer O, Watts DC, Sigusch BW, Kuepper H, Guentsch A. Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater 2012;28:320-6. https://doi.org/10.1016/j.dental.2011.12.008
  17. Ortorp A, Jonsson D, Mouhsen A, Vult von Steyern P. The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study. Dent Mater 2011;27:356-3. https://doi.org/10.1016/j.dental.2010.11.015
  18. Chochlidakis KM, Papaspyridakos P, Geminiani A, Chen CJ, Feng IJ, Ercoli C. Digital versus conventional impressions for fixed prosthodontics: A systematic review and meta-analysis. J Prosthet Dent 2016;116:184-90. https://doi.org/10.1016/j.prosdent.2015.12.017
  19. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131: 107-11. https://doi.org/10.1038/sj.bdj.4802708
  20. Ucar Y, Akova T, Akyil MS, Brantley WA. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns. J Prosthet Dent 2009;102:253-9. https://doi.org/10.1016/S0022-3913(09)60165-7
  21. Seelbach P, Brueckel C, Wöstmann B. Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig 2013;17:1759-64. https://doi.org/10.1007/s00784-012-0864-4
  22. Kim CM, Kim SR, Kim JH, Kim HY, Kim WC. Trueness of milled prostheses according to number of ball-end mill burs. J Prosthet Dent 2016;115:624-9. https://doi.org/10.1016/j.prosdent.2015.10.014
  23. Mously HA, Finkelman M, Zandparsa R, Hirayama H. Marginal and internal adaptation of ceramic crown restorations fabricated with CAD/CAM technology and the heatpress technique. J Prosthet Dent 2014;112:249-56. https://doi.org/10.1016/j.prosdent.2014.03.017
  24. Hoang LN, Thompson GA, Cho SH, Berzins DW, Ahn KW. Die spacer thickness reproduction for central incisor crown fabrication with combined computer-aided design and 3D printing technology: an in vitro study. J Prosthet Dent 2015; 113:398-404. https://doi.org/10.1016/j.prosdent.2014.11.004
  25. Kale E, Seker E, Yilmaz B, Ozcelik TB. Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. J Prosthet Dent 2016;116:890-5. https://doi.org/10.1016/j.prosdent.2016.05.006
  26. Shim JS, Lee JS, Lee JY, Choi YJ, Shin SW, Ryu JJ. Effect of software version and parameter settings on the marginal and internal adaptation of crowns fabricated with the CAD/CAM system. J Appl Oral Sci 2015;23:515-22. https://doi.org/10.1590/1678-775720150081
  27. Boitelle P, Tapie L, Mawussi B, Fromentin O. 3D fitting accuracy evaluation of CAD/CAM copings - comparison with spacer design settings. Int J Comput Dent 2016;19:27-43.

Cited by

  1. 치과용 3D 프린터로 제작된 임시 수복용 레진의 정확도 평가 vol.19, pp.6, 2019, https://doi.org/10.13065/jksdh.20190094
  2. Applications of three-dimensional printers in prosthetic dentistry vol.63, pp.3, 2018, https://doi.org/10.2334/josnusd.21-0072
  3. Bias Evaluation of the Accuracy of Two Extraoral Scanners and an Intraoral Scanner Based on ADA Standards vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5535403
  4. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9950131
  5. Accuracy of 3D printed polymers intended for models and surgical guides printed with two different 3D printers vol.40, pp.2, 2018, https://doi.org/10.4012/dmj.2020-039
  6. A Proposed In Vitro Methodology for Assessing the Accuracy of Three-Dimensionally Printed Dental Models and the Impact of Storage on Dimensional Stability vol.11, pp.13, 2018, https://doi.org/10.3390/app11135994
  7. The Fracture Resistance of Additively Manufactured Monolithic Zirconia vs. Bi-Layered Alumina Toughened Zirconia Crowns When Cemented to Zirconia Abutments. Evaluating the Potential of 3D Printing of vol.9, pp.10, 2018, https://doi.org/10.3390/dj9100115