DOI QR코드

DOI QR Code

Metabolic Engineering of Deinococcus radiodurans for the Production of Phytoene

  • Jeong, Sun-Wook (School of Environmental Engineering, University of Seoul) ;
  • Kang, Chang Keun (School of Environmental Engineering, University of Seoul) ;
  • Choi, Yong Jun (School of Environmental Engineering, University of Seoul)
  • Received : 2018.08.16
  • Accepted : 2018.08.23
  • Published : 2018.10.28

Abstract

A metabolically-engineered Deinococcus radiodurans R1 strain capable of producing phytoene, a colorless $C_{40}$ carotenoid and a promising antioxidant, has been developed. To make this base strain, first, the crtI gene encoding phytoene desaturase was deleted to block the conversion of phytoene to other carotenoids such as lycopene and ${\gamma}$-carotene. This engineered strain produced $0.413{\pm}0.023mg/l$ of phytoene from 10 g/l of fructose. Further enhanced production of phytoene up to $4.46{\pm}0.19mg/l$ was achieved by overexpressing the crtB gene encoding phytoene synthase and the dxs genes encoding 1-deoxy-$\text\tiny{D}$-xylulose-5-phosphate synthase gene, and by deleting the crtD gene. High cell-density culture of our final engineered strain allowed production of $10.3{\pm}0.85mg/l$ of phytoene with the yield and productivity of $1.04{\pm}0.05mg/g$ and $0.143{\pm}0.012mg/l/h$, respectively, from 10 g/l of fructose. Furthermore, the antioxidant potential of phytoene produced by the final engineered strain was confirmed by in vitro DPPH radical-scavenging assay.

Keywords

References

  1. Linnewiel-Hermoni K, Khanin M, Danilenko M, Zango G, Amosi Y, Levy J, et al. 2015. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch. Biochem. Biophys. 572: 28-35. https://doi.org/10.1016/j.abb.2015.02.018
  2. Kotake-Nara E, Hayashi H, Kotake M, Miyashita K, Nagao A. 2001. Acyclic carotenoids and their oxidation mixtures inhibit the growth of HL-60 human promyelocytic leukemia cells. Nutr. Cancer. 39: 273-283. https://doi.org/10.1207/S15327914nc392_18
  3. Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita, Nagao A. 2001. Carotenoid affect proliferation of human prostate cancer cells. J. Nutr. 131: 3303-3306. https://doi.org/10.1093/jn/131.12.3303
  4. Melendez-Martinez AJ, Mapelli-Brahm P, Benitez-Gonzalez A, Stinco CM. 2015. A comprehensive review on the colorless carotenoids phytoene and phytofluene. Arch. Biochem. Biophys. 572: 188-200. https://doi.org/10.1016/j.abb.2015.01.003
  5. Srinivasan R, Babu S, Gothandam KM. 2017. Accumulation of phytoene, a colorless carotenoid by inhibition of phytoene desaturase (PDS) gene in Dunaliella salina V-101. Bioresour. Technol. 242: 311-318. https://doi.org/10.1016/j.biortech.2017.03.042
  6. Fuke T, Sato T, Jha S, Tansengco ML, Atomi H. 2018. Phytoene production utilizing the isoprenoid biosynthesis capacity of Thermococcus kodakarensis. Extremophiles 22: 301-303. https://doi.org/10.1007/s00792-018-0998-7
  7. Barbachano-Torres A, Castelblanco-Matiz LM, Ramos-Valdivia AC, Cerda-García-Rojas CM, Salgado LM, Flores-Ortiz CM, et al. 2014. Analysis of proteomic changes in colored mutants of Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Arch. Microbiol. 196: 411-421. https://doi.org/10.1007/s00203-014-0979-x
  8. Pollmann H, Breitenbach J, Sandmann G. 2017. Development of Xanthophyllomyces dendrorhous as a production system for the colorless carotene phytoene. J. Biotechnol. 247: 34-41. https://doi.org/10.1016/j.jbiotec.2017.02.027
  9. Makarova KS, Aravind L, Wolf Y, Tatusov RL, Minton KW, Koonin EV. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65: 44-79. https://doi.org/10.1128/MMBR.65.1.44-79.2001
  10. Xu Z, Tian B, Sun Z, Lin J, Hua Y. 2007. Identification and functional analysis of a phytoene desaturase gene from the extremely radioresistant bacterium Deinococcus radiodurans. Microbiology 153: 1642-1652. https://doi.org/10.1099/mic.0.2006/002857-0
  11. Yamashiro T, Murata K, Kawai S. 2017. Extremely high intracellular concentration of glucose-6-phosphate and NAD(H) in Deinococcus radiodurans. Extremophiles 21: 399-407. https://doi.org/10.1007/s00792-016-0913-z
  12. Dong X, Tian B, Dai S, Li T, Gua L, Tan Z, et al. 2015. Expression of PprI from Deinococcus radiodurans improves lactic acid production and stress tolerance in Lactococcus lactis. PLoS One 10: e0142918. https://doi.org/10.1371/journal.pone.0142918
  13. Appukuttan D, Sing H, Park SH, Jung JH, Jeong SW, Seo HS, et al. 2015. Engineering synthetic multistress tolerance in Escherichia coli by using a deinococcal response regulator, DR1558. Appl. Environ. Microbiol. 82: 1154-1166.
  14. Jeong SW, Yang JE, Im SH, Choi YJ. 2017. Development of Cre-lox based multiple knockout system in Deinococcus radiodurans R1. Korean J. Chem. Eng. 36: 1-6.
  15. Liu C, Sun Z, Shen S, Lin L, Li T, Tian B, et al. 2014. Identification and characterization of the geranylgeranyl diphosphate synthase in Deinococcus radiodurans. Lett. Appl. Microbiol. 58: 219-224. https://doi.org/10.1111/lam.12181
  16. Tian B, Sun Z, Xu Z, Shen S, Wang H, Hua Y. 2008. Carotenoid 3', 4'-desaturase is involved in carotenoid biosynthesis in the radioresistant bacterium Deinococcus radiodurans. Microbiology 154: 3697-3706. https://doi.org/10.1099/mic.0.2008/021071-0
  17. Sun Z, Shen S, Wang C, Wang H, Hu Y, Jiao J, et al. 2009. A novel carotenoid 1, 2-hydratase (CruF) from two species of the non-photosynthetic bacterium Deinococcus. Microbiology 155: 2775-2783. https://doi.org/10.1099/mic.0.027623-0
  18. Sun Z, Shen S, Tian B, Wang H, Xu Z, Wang L, et al. 2009. Functional analysis of $\gamma$-carotene ketolase involved in the carotenoid biosynthesis of Deinococcus radiodurans. FEMS Microbiol. Lett. 301: 21-27. https://doi.org/10.1111/j.1574-6968.2009.01794.x
  19. Venkateswaran A, McFarlan SC, Ghosal D, Minton KW, Vasilenko A, Makarova K et al. 2000. Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl. Environ. Microbiol. 66: 2620-2626. https://doi.org/10.1128/AEM.66.6.2620-2626.2000
  20. He Y. 2009. High cell density production of Deinococcus radiodurans under optimized conditions. J. Ind. Microbiol. Biotechnol. 36: 539-546. https://doi.org/10.1007/s10295-008-0524-5
  21. Tian B, Xu Z, Sun Z, Lin J, Hua Y. 2007. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim. Biophys. Acta 1770: 902-911. https://doi.org/10.1016/j.bbagen.2007.01.016
  22. Liu D, Shi J, Ibarra AC, Kakuda Y, Xue SJ. 2008. The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and $\beta$-carotene mixtures on the DPPH free radical. Food Sci. Technol. 41: 1344-1349.
  23. Matthews PD, Wurtzel ET. 2000. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl. Microbiol. Biotechnol. 53: 396-400. https://doi.org/10.1007/s002530051632
  24. Rodriguez-Concepcion M, Boronat A. 2002. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130: 1079-1089. https://doi.org/10.1104/pp.007138
  25. Yang J, Guo L. 2014. Biosynthesis of $\beta$-carotene in engineered E. coli using the MEP and MVA pathways. Microb. Cell Fact. 13: 160. https://doi.org/10.1186/s12934-014-0160-x
  26. Kim SW, Keasling JD. 2001. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 74: 408-415.
  27. Zhou Y, Nambou K, Wei L, Cao J, Imanaka T, Hua Q. 2013. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Biotechnol. Lett. 35: 2137-2145. https://doi.org/10.1007/s10529-013-1317-0
  28. Yang Y, Yatsunami R, Ando A, Miyoko N, Fukui T, Takaichi S. 2015. Complete biosynthetic pathway of the $C_{50}$ carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J. Bacteriol. 197: 1614-1623. https://doi.org/10.1128/JB.02523-14
  29. Nakayama T, Chichester CO, Lukton A, Mackinney G. 1957. Phytoene production in Phycomyces. Arch. Biochem. Biophys. 66: 310-315. https://doi.org/10.1016/S0003-9861(57)80006-X
  30. Lu CH, Choi JH, Engelmann Moran N, Jin YS, Erdman JW Jr. 2011. Laboratory-scale production of 13C-labeled lycopene and phytoene by bioengineered Escherichia coli. J. Agric. Food Chem. 59: 9996-10005. https://doi.org/10.1021/jf202599z
  31. Dose J, Matsugo S, Yokokawa H, Koshida Y, Okazaki S, Seidel U, et al. 2016. Free radical scavenging and cellular antioxidant properties of Astaxanthin. Int. J. Mol. Sci. 17: 103. https://doi.org/10.3390/ijms17010103
  32. Zaini RG, Brandt K, Clench MR, Le Maitre CL. 2012. Effects of bioactive compounds from carrots (Daucus carota L.), polyacetylenes, beta-carotene and lutein on human lymphoid leukaemia cells. Anticancer Agents Med. Chem. 12: 640-652. https://doi.org/10.2174/187152012800617704

Cited by

  1. Comparative study on amylosucrases derived from Deinococcus species and catalytic characterization and use of amylosucrase derived from Deinococcus wulumuqiensis vol.3, pp.1, 2019, https://doi.org/10.1515/amylase-2019-0002
  2. Isolation of Lactobacillus plantarum subsp. plantarum Producing C30 Carotenoid 4,4'-Diaponeurosporene and the Assessment of Its Antioxidant Activity vol.29, pp.12, 2019, https://doi.org/10.4014/jmb.1909.09007
  3. High-Yield Production of Lycopene from Corn Steep Liquor and Glycerol Using the Metabolically Engineered Deinococcus radiodurans R1 Strain vol.68, pp.18, 2018, https://doi.org/10.1021/acs.jafc.0c01024
  4. Enhanced Lycopene Production by UV-C Irradiation in Radiation-Resistant Deinococcus radiodurans R1 vol.30, pp.12, 2018, https://doi.org/10.4014/jmb.2009.09013
  5. Metabolic Engineering of Extremophilic Bacterium Deinococcus radiodurans for the Production of the Novel Carotenoid Deinoxanthin vol.9, pp.1, 2018, https://doi.org/10.3390/microorganisms9010044
  6. Mitosis Inhibitors Induce Massive Accumulation of Phytoene in the Microalga Dunaliella salina vol.19, pp.11, 2018, https://doi.org/10.3390/md19110595
  7. High-Level Squalene Production from Methane Using a Metabolically Engineered Methylomonas sp. DH-1 Strain vol.9, pp.48, 2018, https://doi.org/10.1021/acssuschemeng.1c06776