DOI QR코드

DOI QR Code

Interactivity of Neural Representations for Perceiving Shared Social Memory

  • Ahn, Jeesung (Graduate Program in Cognitive Science, Yonsei University) ;
  • Kim, Hye-young (Booth School of Business, University of Chicago) ;
  • Park, Jonghyun (Department of Psychology, Yonsei University) ;
  • Han, Sanghoon (Graduate Program in Cognitive Science, Yonsei University)
  • Received : 2018.08.20
  • Accepted : 2018.09.17
  • Published : 2018.09.30

Abstract

Although the concept of "common sense" is often taken for granted, judging whether behavior or knowledge is common sense requires a complex series of mental processes. Additionally, different perceptions of common sense can lead to social conflicts. Thus, it is important to understand how we perceive common sense and make relevant judgments. The present study investigated the dynamics of neural representations underlying judgments of what common sense is. During functional magnetic resonance imaging, participants indicated the extent to which they thought that a given sentence corresponded to common sense under the given perspective. We incorporated two different decision contexts involving different cultural perspectives to account for social variability of the judgments, an important feature of common sense judgments apart from logical true/false judgments. Our findings demonstrated that common sense versus non-common sense perceptions involve the amygdala and a brain network for episodic memory recollection, including the hippocampus, angular gyrus, posterior cingulate cortex, and ventromedial prefrontal cortex, suggesting integrated affective, mnemonic, and social functioning in common sense processing. Furthermore, functional connectivity multivariate pattern analysis revealed that interactivity among the amygdala, angular gyrus, and parahippocampal cortex reflected representational features of common sense perception and not those of non-common sense perception. Our study demonstrated that the social memory network is exclusively involved in processing common sense and not non-common sense. These results suggest that intergroup exclusion and misunderstanding can be reduced by experiencing and encoding long-term social memories about behavioral norms and knowledge that act as common sense of the outgroup.

Keywords

References

  1. Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. R. (1995). Fear and the human amygdala. Journal of Neuroscience, 15(9), 5879-5891. DOI: 10.1523/JNEUROSCI.15-09-05879.1995
  2. Aggleton, J. P. (2012). Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function. Neuroscience and Biobehavioral Reviews, 36(7), 1579-1596. DOI: 10.1016/j.neubiorev.2011.09.005
  3. Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R., & Olson, I. R. (2007). Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. Journal of Neuroscience, 27(52), 14415-14423. DOI: 10.1523/JNEUROSCI.4163-07.2007
  4. Bicchieri, C. (2005). The grammar of society: The nature and dynamics of social norms: Cambridge University Press.
  5. Blair, R. J. (2007). The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends in Cognitive Sciences, 11(9), 387-392. DOI: 10.1016/j.tics.2007.07.003
  6. Burianova, H., McIntosh, A. R., & Grady, C. L. (2010). A common functional brain network for autobiographical, episodic, and semantic memory retrieval. Neuroimage, 49(1), 865-874. DOI: 10.1016/j.neuroimage.2009.08.066
  7. Cabeza, R., Mazuz, Y. S., Stokes, J., Kragel, J. E., Woldorff, M. G., Ciaramelli, E., ... Moscovitch, M. (2011). Overlapping parietal activity in memory and perception: evidence for the attention to memory model. Journal of Cognitive Neuroscience, 23(11), 3209-3217. DOI: 10.1162/jocn_a_00065
  8. Cabeza, R., Prince, S. E., Daselaar, S. M., Greenberg, D. L., Budde, M., Dolcos, F., ... Rubin, D. C. (2004a). Brain activity during episodic retrieval of autobiographical and laboratory events: An fMRI study using a novel photo paradigm. Journal of Cognitive Neuroscience, 16(9), 1583-1594. DOI: 10.1162/0898929042568578
  9. Cabeza, R., Prince, S. E., Daselaar, S. M., Greenberg, D. L., Budde, M., Dolcos, F., ... Rubin, D. C. (2004b). Brain activity during episodic retrieval of autobiographical and laboratory events: an fMRI study using a novel photo paradigm. Journal of Cognitive Neuroscience, 16(9), 1583-1594. DOI: 10.1162/0898929042568578
  10. Cabeza, R., & St Jacques, P. (2007). Functional neuroimaging of autobiographical memory. Trends in Cognitive Sciences, 11(5), 219-227. DOI: 10.1016/j.tics.2007.02.005
  11. Chan, D., Fox, N. C., Scahill, R. I., Crum, W. R., Whitwell, J. L., Leschziner, G., ... Rossor, M. N. (2001). Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Annals of Neurology, 49(4), 433-442. DOI: 10.1002/ana.92
  12. Cunningham, W. A., Van Bavel, J. J., & Johnsen, I. R. (2008). Affective flexibility: evaluative processing goals shape amygdala activity. Psychological Science, 19(2), 152-160. DOI: 10.1111/j.1467-9280.2008.02061.x
  13. Daselaar, S. M., Prince, S. E., Dennis, N. A., Hayes, S. M., Kim, H., & Cabeza, R. (2009). Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Frontiers in Human Neuroscience, 3, 13. DOI: 10.3389/neuro.09.013.2009
  14. De Marzio, D. M. (2010). Dealing with Diversity: On the Uses of Common Sense in Descartes and Montaigne. Studies in Philosophy and Education, 29(3), 301-313. DOI: 10.1007/s11217-010-9179-6
  15. Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. Journal of Neuroscience Methods, 118(2), 115-128. DOI: 10.1016/S0165-0270(02)00121-8
  16. Diedrichsen, J., & Shadmehr, R. (2005). Detecting and adjusting for artifacts in fMRI time series data. Neuroimage, 27(3), 624-634. DOI: 10.1016/j.neuroimage.2005.04.039
  17. Duarte, A., Henson, R. N., & Graham, K. S. (2011). Stimulus content and the neural correlates of source memory. Brain Research, 1373, 110-123. DOI: 10.1016/j.brainres.2010.11.086
  18. Edelson, M., Sharot, T., Dolan, R. J., & Dudai, Y. (2011). Following the crowd: brain substrates of long-term memory conformity. Science, 333(6038), 108-111. DOI: 10.1126/science.1203557
  19. Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron, 23(2), 209-226. DOI: 10.1016/S0896-6273(00)80773-4
  20. Ewbank, M. P., Barnard, P. J., Croucher, C. J., Ramponi, C., & Calder, A. J. (2009). The amygdala response to images with impact. Social Cognitive and Affective Neuroscience, 4(2), 127-133. DOI: 10.1093/scan/nsn048
  21. Fletcher, P. C., Frith, C. D., Baker, S. C., Shallice, T., Frackowiak, R. S., & Dolan, R. J. (1995). The mind's eye--precuneus activation in memory-related imagery. Neuroimage, 2(3), 195-200. DOI: 10.1006/nimg.1995.1025
  22. Fletcher, P. C., Happe, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiak, R. S., & Frith, C. D. (1995). Other minds in the brain: a functional imaging study of "theory of mind" in story comprehension. Cognition, 57(2), 109-128. DOI: 10.1016/0010-0277(95)00692-R
  23. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 35-41. DOI: 10.2307/3033543
  24. French, S. A. (1995). What is social memory? Southern Cultures, 2(1), 9-18. DOI: 10.1353/scu.1995.0049
  25. Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6(3), 218-229. DOI: 10.1006/nimg.1997.0291
  26. Frith, U., & Frith, C. (2001). The biological basis of social interaction. Current Directions in Psychological Science, 10(5), 151-155. DOI: 10.1111/1467-8721.00137
  27. Gallagher, H. L., Happe, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: an fMRI study of 'theory of mind'in verbal and nonverbal tasks. Neuropsychologia, 38(1), 11-21. DOI: 10.1016/S0028-3932(99)00053-6
  28. Greene, J., & Haidt, J. (2002). How (and where) does moral judgment work? Trends in Cognitive Sciences, 6(12), 517-523. DOI: 10.1016/S1364-6613(02)02011-9
  29. Hayama, H. R., Vilberg, K. L., & Rugg, M. D. (2012). Overlap between the neural correlates of cued recall and source memory: evidence for a generic recollection network? Journal of Cognitive Neuroscience, 24(5), 1127-1137. DOI: 10.1162/jocn_a_00202
  30. Haynes, J.-D., & Rees, G. (2006). Neuroimaging: decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523. DOI: 10.1038/nrn1931
  31. Hitti, F. L., & Siegelbaum, S. A. (2014). The hippocampal CA2 region is essential for social memory. Nature, 508(7494), 88-+. DOI: 10.1038/nature13028
  32. Hutchinson, J. B., Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. Learning & Memory, 16(6), 343-356. DOI: 10.1101/lm.919109
  33. Knutson, K. M., Wood, J. N., Spampinato, M. V., & Grafman, J. (2006). Politics on the brain: an FMRI investigation. Social Neuroscience, 1(1), 25-40. DOI: 10.1080/17470910600670603
  34. Kruschwitz, J., List, D., Waller, L., Rubinov, M., & Walter, H. (2015). GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity. Journal of Neuroscience Methods, 245, 107-115. DOI: 10.1016/j.jneumeth.2015.02.021
  35. LaBar, K. S., & Cabeza, R. (2006). Cognitive neuroscience of emotional memory. Nature Reviews Neuroscience, 7(1), 54-64. DOI: 10.1038/nrn1825
  36. Loughead, J., Gur, R. C., Elliott, M., & Gur, R. E. (2008). Neural circuitry for accurate identification of facial emotions. Brain Research, 1194, 37-44. DOI: 10.1016/j.brainres.2007.10.105
  37. McCormick, C., Moscovitch, M., Protzner, A. B., Huber, C. G. & McAndrews, M. P. (2010). Hippocampalneocortical networks differ during encoding and retrieval of relational memory: functional and effective connectivity analyses. Neuropsychologia, 48(11), 3272-3281. DOI: 10.1016/j.neuropsychologia.2010.07.010
  38. O'Toole, A. J., Jiang, F., Abdi, H., Penard, N., Dunlop, J. P., & Parent, M. A. (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. Journal of Cognitive Neuroscience, 19(11), 1735-1752. DOI: 10.1162/jocn.2007.19.11.1735
  39. Okuyama, T., Kitamura, T., Roy, D. S., Itohara, S., & Tonegawa, S. (2016). Ventral CA1 neurons store social memory. Science, 353(6307), 1536-1541. DOI: 10.1126/science.aaf7003
  40. Olick, J. K., & Robbins, J. (1998). Social memory studies: From "collective memory" to the historical sociology of mnemonic practices. Annual Review of Sociology, 24(1), 105-140. https://doi.org/10.1146/annurev.soc.24.1.105
  41. Pajula, J., & Tohka, J. (2016). How many is enough? Effect of sample size in inter-subject correlation analysis of fMRI. Computational Intelligence and Neuroscience, 2016, 2. DOI: 10.1155/2016/2094601
  42. Pantazatos, S. P., Talati, A., Pavlidis, P., & Hirsch, J. (2012a). Cortical functional connectivity decodes subconscious, task-irrelevant threat-related emotion processing. Neuroimage, 61(4), 1355-1363. DOI: 10.1016/j.neuroimage.2012.03.051
  43. Pantazatos, S. P., Talati, A., Pavlidis, P., & Hirsch, J. (2012b). Decoding unattended fearful faces with whole-brain correlations: an approach to identify condition-dependent large-scale functional connectivity. PLoS Computational Biology, 8(3), e1002441. DOI: 10.1371/journal.pcbi.1002441
  44. Pantazatos, S. P., Talati, A., Schneier, F. R., & Hirsch, J. (2014). Reduced anterior temporal and hippocampal functional connectivity during face processing discriminates individuals with social anxiety disorder from healthy controls and panic disorder, and increases following treatment. Neuropsychopharmacology, 39(2), 425-434. DOI: 10.1038/npp.2013.211
  45. Phelps, E. A. (2004). Human emotion and memory: interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14(2), 198-202. DOI: 10.1016/j.conb.2004.03.015
  46. Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 106(2), 274-285. DOI: 10.1037/0735-7044.106.2.274
  47. Prince, S. E., Daselaar, S. M., & Cabeza, R. (2005). Neural correlates of relational memory: successful encoding and retrieval of semantic and perceptual associations. Journal of Neuroscience, 25(5), 1203-1210. DOI: 10.1523/JNEUROSCI.2540-04.2005
  48. Raine, A., & Yang, Y. (2006). Neural foundations to moral reasoning and antisocial behavior. Social Cognitive and Affective Neuroscience, 1(3), 203-213. DOI: 10.1093/scan/nsl033
  49. Richardson, M. P., Strange, B. A., & Dolan, R. J. (2004). Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nature Neuroscience, 7(3), 278-285. DOI: 10.1038/nn1190
  50. Rosenfeld, S. A. (2011). Common Sense: Harvard University Press.
  51. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3), 1059-1069. DOI: 10.1016/j.neuroimage.2009.10.003
  52. Rugg, M. D., & Vilberg, K. L. (2013). Brain networks underlying episodic memory retrieval. Current Opinion in Neurobiology, 23(2), 255-260. DOI: 10.1016/j.conb.2012.11.005
  53. Rule, N. O., Freeman, J. B., Moran, J. M., Gabrieli, J. D., Adams Jr, R. B., & Ambady, N. (2009). Voting behavior is reflected in amygdala response across cultures. Social Cognitive and Affective Neuroscience, 5(2-3), 349-355. DOI: 10.1093/scan/nsp046
  54. Sander, D., Grafman, J., & Zalla, T. (2003). The human amygdala: an evolved system for relevance detection. Reviews in the Neurosciences, 14(4), 303-316. DOI: 10.1515/REVNEURO.2003.14.4.303
  55. Schiller, D., Freeman, J. B., Mitchell, J. P., Uleman, J. S., & Phelps, E. A. (2009). A neural mechanism of first impressions. Nature Neuroscience, 12(4), 508-514. DOI: 10.1038/nn.2278
  56. Simonite, T. (2015a). Facebook's Artificial-Intelligence Software Gets a Dash More Common Sense. Retrieved from https://www.technologyreview.com/s/543116/facebooks-artificial-intelligence-softwaregets-a-dash-more-common-sense/
  57. Simonite, T. (2015b). Teaching Machines to Understand Us MIT Technology Review.
  58. Slotnick, S. D., Moo, L. R., Segal, J. B., & Hart, J., Jr. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cognitive Brain Research, 17(1), 75-82. DOI: 10.1016/S0926-6410(03)00082-X
  59. Snir, I. (2015). Experts Of Common Sense: Philosophers, Laypeople And Democratic Politics. Humana Mente-Journal of Philosophical Studies (28), 187-210. Retrieved from http://www.humanamente.eu/index.php/HM/article/view/87
  60. Stangor, C., Jhangiani, R., & Hammond, T. (2014). Principles of social psychology: BC Campus.
  61. Vanderwal, T., Hunyadi, E., Grupe, D. W., Connors, C. M., & Schultz, R. T. (2008). Self, mother and abstract other: an fMRI study of reflective social processing. Neuroimage, 41(4), 1437-1446. DOI: 10.1016/j.neuroimage.2008.03.058
  62. Zerubavel, N., Bearman, P. S., Weber, J., & Ochsner, K. N. (2015). Neural mechanisms tracking popularity in real-world social networks. Proceedings of the National Academy of Sciences, 112(49), 15072-15077. DOI: 10.1073/pnas.1511477112