DOI QR코드

DOI QR Code

Evaluation of Area Dose Product and Image Density according to the Variable Tube Current

관전류 변화에 따른 면적선량과 영상 농도 평가

  • Yun, YoungWoo (Department of Radiologic Technology, Choonhae College of Health Sciences) ;
  • Je, Jaeyong (Department of Radiological Technology, Dong-Eui Institute of Technology)
  • 윤영우 (춘해보건대학교 방사선과) ;
  • 제재용 (동의과학대학교 방사선과)
  • Received : 2018.09.13
  • Accepted : 2018.10.31
  • Published : 2018.10.31

Abstract

This research aims at measuring images density of according to DAP(dose area product), and suggesting the need to quality control of exposure dose. When tube voltage was fixed as 80 kVp and tube current was set as 1, 25, 50, 80, and 100 mAs, with the increase of DAP from 25 mAs to 50 mAs, the dose also rose 1.88 times as much as before, and with the increase from 50 mAs to 100 mAs, it got 2.05 time higher than before. However, the images density obtained as film grew as much as 48% with the increase from 25 mAs to 50 mAs, and 29% with the increase from 50 mAs to 100 mAs. In addition, it has been found out that the higher the DR images density got from 25 mAs to 50 mAs, the bigger it became by 12%, and that it got bigger by 30% with the increase from 50 mAs to 100 mAs. In other words, the differences in the image density by the increase of the dose with the digital imaging equipment in a proper condition was proved to be less than in the film images. Based on the results of this research, medical institutions using a digital imaging equipment are expected to be able to reduce exposure dose of each region of interest than now through the quality control of radiation dose.

본 연구는 면적선량에 따른 영상의 농도를 측정하여 피폭선량에 대한 정도관리 필요성을 제시하고자 하였다. 관전압을 80 kVp로 고정하고 관전류를 1, 25, 50, 80, 100 mAs로 조사한 결과 면적선량은 25 mAs에서 50 mAs로 증가하면 1.88배의 선량이 증가하고 50 mAs에서 100 mAs로 증가하면 2.05배 증가하였다. 하지만 필름으로 획득한 영상의 농도는 25 mAs에서 50 mAs로 증가하면 48% 증가하고, 50 mAs에서 100 mAs로 증가하면 29% 증가하였다. 또한 DR 영상의 농도는 25 mAs에서 50 mAs로 증가하면 12% 증가하고, 50 mAs에서 100 mAs로 증가하면 30% 증가하는 것으로 나타났다. 즉, 디지털 영상촬영 장비는 적정 촬영 조건에서 선량 증가에 따른 영상의 농도차이가 필름 영상보다는 적게 나타났다. 본 연구의 결과에서 디지털 영상 촬영 장비를 사용하는 의료기관에서는 방사선 선량에 대한 정도관리를 통하여 현재보다 촬영 부위별 피폭선량을 조금이나마 더 줄일 수 있을 것으로 판단되어진다.

Keywords

References

  1. http://www.nifds.go.kr.
  2. M. Korner, C. H. Weber, S. Wirth, K. J. Pfeifer, M. F. Reiser, and M. Treitl, "Advances in Digital Radiography: Physical Principles and System Overview1," Radiographics, Vol. 27, No. 3 pp. 675-686, 2007. https://doi.org/10.1148/rg.273065075
  3. S. E. Peters, P. C. Brennan, "Digital radiography: are the manufacturers'settings too high? Optimization of the Kodak digital radiography system with aid of the computed radiography dose index," Eur. Radiol, Vol. 12, No. 9, pp. 2381-2387, 2002. https://doi.org/10.1007/s00330-001-1230-0
  4. W. Huda, A. M. Sajewicz, K. M. Ogden, D. R. Dance, "Experimental investigation of the dose and image quality characteristics of a digital mammography imaging system," Med. Phys, Vol. 30, No. 3, pp. 442-448, 2003. https://doi.org/10.1118/1.1543572
  5. N. A. Gkanatsios, W. Huda, K. R. Peters, "Effect of radiographic techniques(kVp and mAs) on image quality and patient doses in digital subtraction angiography," Med. Phys, Vol. 29, N0. 8, pp. 1643-1650, 2002. https://doi.org/10.1118/1.1493213
  6. A. A. Bankier, C. Schaefer-Prokop, V. D. Maertelaer, D. Tack, P. Jaksch, W. Klepetko, P. A. Gevenois, "Air Trapping: Comparison of Standard-Dose and Simulated Low-Dose Thin-Section CT Techniques," Radiology, Vol. 242, No. 3, pp. 898-906, 2007. https://doi.org/10.1148/radiol.2423060196
  7. V. Neofotistou, V. Tsapaki, S. Kottou, A. Schreiner-Karoussou , E. Vano, "Does digital imaging decrease patient dose? A pilot study and review of the literature," Radiat Prot Dosimetry, Vol. 117, No. 1-3, pp. 204-210, 2005. https://doi.org/10.1093/rpd/nci718
  8. K. Bacher, P. Smeets, K. Bonnarens, A. De Hauwere, Verstraete K, H. Thierens, "Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography," AJR. Am. J. Roentgenol, Vol. 181, No. 4, pp. 923-929, 2003. https://doi.org/10.2214/ajr.181.4.1810923
  9. L. J. Kroft, W. J. Veldkamp, B. J. Mertens, J. P. Van Delft, J. Geleijns, "Detection of simulated nodules on clinical radiographs: dose reduction at digital posteroanterior chest radiography," Radiology, Vol. 241, No. 2, pp. 392-398, 2006. https://doi.org/10.1148/radiol.2412051326