DOI QR코드

DOI QR Code

Controlling Quantum Confinement and Magnetic Doping of Cesium Lead Halide Perovskite Nanocrystals

  • Received : 2018.08.27
  • Accepted : 2018.09.15
  • Published : 2018.11.30

Abstract

Cesium lead halide ($CsPbX_3$) nanocrystals have emerged as a new family of semiconductor nanomaterials that can outperform existing semiconductor nanocrystals owing to their superb optical and charge transport properties. Although these materials are expected to have many superior properties, control of the quantum confinement and isoelectronic magnetic doping, which can greatly enhance their optical, electronic, and magnetic properties, has faced significant challenges. These obstacles have hindered full utilization of the benefits that can be obtained by using $CsPbX_3$ nanocrystals exhibiting strong quantum confinement or coupling between exciton and magnetic dopants, which have been extensively explored in many other semiconductor quantum dots. Here, we review progress made during the past several years in tackling the issues of introducing controllable quantum confinement and doping of $Mn^{2+}$ ions as the prototypical magnetic dopant in colloidal $CsPbX_3$ nanocrystals.

Keywords

References

  1. X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. H. Choy, and A. L. Rogach, "Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer," Nano Lett., 16 [2] 1415-20 (2016). https://doi.org/10.1021/acs.nanolett.5b04959
  2. G. Li, F. W. R. Rivarola, N. J. L. K. Davis, S. Bai, T. C. Jellicoe, F. de la Pena, S. Hou, C. Ducati, F. Gao, R. H. Friend, N. C. Greenham, and Z.-K. Tan, "Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method," Adv. Mater., 28 [18] 3528-34 (2016). https://doi.org/10.1002/adma.201600064
  3. Q. A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G. Bertoni, J. M. Ball, M. Prato, A. Petrozza, and L. Manna, "Strongly Emissive Perovskite Nanocrystal Inks for High-Voltage Solar Cells," Nat. Energy 2 16194 (2016).
  4. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, and D. T. Moore, J. A. Christians, T. Chakrabarti, and J. M. Luther, "Quantum Dot-Induced Phase Stabilization of ${\alpha}$-$CsPbI_3$ Perovskite for High-Efficiency Photovoltaics," Science, 354 [6308] 92-5 (2016). https://doi.org/10.1126/science.aag2700
  5. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc. 131 [17] 6050-51 (2009). https://doi.org/10.1021/ja809598r
  6. G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, and P. Mandal, "Terahertz Conductivity within Colloidal $CsPbBr_3$ Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths," Nano Lett., 16 [8] 4838-48 (2016). https://doi.org/10.1021/acs.nanolett.6b01168
  7. S. ten Brinck and I. Infante, "Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals," ACS Energy Lett., 1 [6] 1266-72 (2016). https://doi.org/10.1021/acsenergylett.6b00595
  8. R. E. Brandt, J. R. Poindexter, P. Gorai, R. C. Kurchin, R. L. Z. Hoye, L. Nienhaus, M. W. B. Wilson, J. A. Polizzotti, R. Sereika, R. Zaltauskas, L. C. Lee, J. L. MacManus- Driscoll, M. Bawendi, V. Stevanović, and T. Buonassisi, "Searching for "Defect-Tolerant" Photovoltaic Materials: Combined Theoretical and Experimental Screening," Chem. Mater., 29 [11] 4667-74 (2017). https://doi.org/10.1021/acs.chemmater.6b05496
  9. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, "Nanocrystals of Cesium Lead Halide Perovskites ($CsPbX_3$, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Lett., 15 [6] 3692-96 (2015). https://doi.org/10.1021/nl5048779
  10. P. K. Santra and P. V. Kamat, "Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%," J. Am. Chem. Soc., 134 [5] 2508-11 (2012). https://doi.org/10.1021/ja211224s
  11. P. V. Kamat, "Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics," J. Phys. Chem. Lett., 4 [6] 908-18 (2013). https://doi.org/10.1021/jz400052e
  12. A. J. Nozik, "Quantum Dot Solar Cells," Phys. E, 14 [1-2] 115-20 (2002). https://doi.org/10.1016/S1386-9477(02)00374-0
  13. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, and E. H. Sargent, "Hybrid Passivated Colloidal Quantum Dot Solids," Nat. Nanotechnol., 7 577 (2012). https://doi.org/10.1038/nnano.2012.127
  14. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, "Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution," Science, 310 [5747] 462-5 (2005). https://doi.org/10.1126/science.1117908
  15. J.-H. Choi, H. Wang, S. J. Oh, T. Paik, P. Sung, J. Sung, X. Ye, T. Zhao, B. T. Diroll, C. B. Murray, C. R. Kagan, "Exploiting the Colloidal Nanocrystal Library to Construct Electronic Devices," Science, 352 [6282] 205-8 (2016). https://doi.org/10.1126/science.aad0371
  16. C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, "Building Devices from Colloidal Quantum Dots," Science, 353 [6302] aac5523 (2016).
  17. S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, E. H. Sargent, "Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics," Nat. Mater., 4 138 (2005). https://doi.org/10.1038/nmat1299
  18. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum Dots for Live Cells, in vivo Imaging, and Diagnostics," Science 307 [5709] 538-44 (2005). https://doi.org/10.1126/science.1104274
  19. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, "Quantum Dot Bioconjugates for Imaging, Labelling and Sensing," Nat. Mater., 4 [6] 435-46 (2005). https://doi.org/10.1038/nmat1390
  20. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, "In vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots," Nat. Biotechnol., 22 [8] 969-76 (2004). https://doi.org/10.1038/nbt994
  21. A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science, 271 [5251] 933-37 (1996). https://doi.org/10.1126/science.271.5251.933
  22. D. J. Norris, N. Yao, F. T. Charnock, and T. A. Kennedy, "High-Quality Manganese-Doped ZnSe Nanocrystals," Nano Lett., 1 [1] 3-7 (2001). https://doi.org/10.1021/nl005503h
  23. D. J. Norris, A. L. Efros, and S. C. Erwin, "Doped Nanocrystals," Science, 319 [5871] 1776-79 (2008). https://doi.org/10.1126/science.1143802
  24. N. Pradhan and X. G. Peng, "Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters: Control of Optical Performance via Greener Synthetic Chemistry," J. Am. Chem. Soc., 129 [11] 3339-47 (2007). https://doi.org/10.1021/ja068360v
  25. B. B. Srivastava, S. Jana, N. S. Karan, S. Paria, N. R. Jana, D. D. Sarma, and N. Pradhan, "Highly Luminescent Mn-Doped ZnS Nanocrystals: Gram-Scale Synthesis," J. Phys. Chem. Lett., 1 [9] 1454-58 (2010). https://doi.org/10.1021/jz100378w
  26. R. Beaulac, L. Schneider, P. I. Archer, G. Bacher, and D. R. Gamelin, "Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots," Science, 325 [5943] 973-76 (2009). https://doi.org/10.1126/science.1174419
  27. D. Parobek, B. J. Roman, Y. Dong, H. Jin, E. Lee, M. Sheldon, and D. H. Son, "Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals," Nano Lett., 16 [12] 7376-80 (2016). https://doi.org/10.1021/acs.nanolett.6b02772
  28. D. Parobek, Y. Dong, T. Qiao, and D. H. Son, "Direct Hot- Injection Synthesis of Mn-Doped $CsPbBr_3$ Nanocrystals," Chem. Mater., 30 [9] 2939-44 (2018). https://doi.org/10.1021/acs.chemmater.8b00310
  29. W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J. M. Pietryga, and V. I. Klimov, "$Mn^{2+}$-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content," J. Am. Chem. Soc., 138 [45] 14954-61 (2016). https://doi.org/10.1021/jacs.6b08085
  30. Q. A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, and L. Manna, "Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions," J. Am. Chem. Soc., 137 [32] 10276-81 (2015). https://doi.org/10.1021/jacs.5b05602
  31. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, "Fast Anion- Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites ($CsPbX_3$, X = Cl, Br, I)," Nano Lett., 15 [8] 5635-40 (2015). https://doi.org/10.1021/acs.nanolett.5b02404
  32. J. Li, L. Luo, H. Huang, C. Ma, Z. Ye, J. Zeng, and H. He, "2D Behaviors of Excitons in Cesium Lead Halide Perovskite Nanoplatelets," J. Phys. Chem. Lett., 8 [6] 1161-68 (2017). https://doi.org/10.1021/acs.jpclett.7b00017
  33. J. Aneesh, A. Swarnkar, V. Kumar Ravi, R. Sharma, A. Nag, and K. V. Adarsh, "Ultrafast Exciton Dynamics in Colloidal $CsPbBr_3$ Perovskite Nanocrystals: Biexciton Effect and Auger Recombination," J. Phys. Chem. C, 121 [8] 4734-39 (2017). https://doi.org/10.1021/acs.jpcc.7b00762
  34. A. Shinde, R. Gahlaut, and S. Mahamuni, "Low-Temperature Photoluminescence Studies of $CsPbBr_3$ Quantum Dots," J. Phys. Chem. C, 121 [27] 14872-78 (2017). https://doi.org/10.1021/acs.jpcc.7b02982
  35. H. Utzat, K. E. Shulenberger, O. B. Achorn, M. Nasilowski, T. S. Sinclair, and M. G. Bawendi, "Probing Linewidths and Biexciton Quantum Yields of Single Cesium Lead Halide Nanocrystals in Solution," Nano Lett., 17 [11] 6838-46 (2017). https://doi.org/10.1021/acs.nanolett.7b03120
  36. M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stoferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Raino, and A. L. Efros, "Bright Triplet Excitons in Caesium Lead Halide Perovskites," Nature, 553 189-93 (2018). https://doi.org/10.1038/nature25147
  37. M. C. Brennan, J. E. Herr, T. S. Nguyen-Beck, J. Zinna, S. Draguta, S. Rouvimov, J. Parkhill, and M. Kuno, "Origin of the Size-Dependent Stokes Shift in $CsPbBr_3$ Perovskite Nanocrystals," J. Am. Chem. Soc., 139 [35] 12201-8 (2017). https://doi.org/10.1021/jacs.7b05683
  38. J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, and T. Pullerits, "Size- and Wavelength-Dependent Two-Photon Absorption Cross-Section of $CsPbBr_3$ Perovskite Quantum Dots," J. Phys. Chem. Lett., 8 [10] 2316-21 (2017). https://doi.org/10.1021/acs.jpclett.7b00613
  39. M. Koolyk, D. Amgar, S. Aharon, and L. Etgar, "Kinetics of Cesium Lead Halide Perovskite Nanoparticle Growth; Focusing and De-Focusing of Size Distribution," Nanoscale, 8 [12] 6403-9 (2016). https://doi.org/10.1039/C5NR09127F
  40. Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, and A. P. Alivisatos, "Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies," J. Am. Chem. Soc., 137 [51] 16008-11 (2015). https://doi.org/10.1021/jacs.5b11199
  41. Q. A. Akkerman, S. G. Motti, A. R. Srimath Kandada, E. Mosconi, V. D'Innocenzo, G. Bertoni, S. Marras, B. A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato, and L. Manna, "Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control," J. Am. Chem. Soc., 138 [3] 1010-16 (2016). https://doi.org/10.1021/jacs.5b12124
  42. A. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He, and Y. Liu, "Insight into the Ligand-Mediated Synthesis of Colloidal $CsPbBr_3$ Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors," ACS Nano, 10 [8] 7943-54 (2016). https://doi.org/10.1021/acsnano.6b03863
  43. S. Sun, D. Yuan, Y. Xu, A. Wang, and Z. Deng, "Ligand- Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature," ACS Nano, 10 [3] 3648-57 (2016). https://doi.org/10.1021/acsnano.5b08193
  44. G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A. H. Khan, S. Marras, I. Moreels, L. Manna, "Role of Acid- Base Equilibria in the Size, Shape, and Phase Control of Cesium Lead Bromide Nanocrystals," ACS Nano, 12 [2] 1704-11 (2018). https://doi.org/10.1021/acsnano.7b08357
  45. A. Dutta, S. K. Dutta, S. Das Adhikari, and N. Pradhan, "Tuning the Size of $CsPbBr_3$ Nanocrystals: All at One Constant Temperature," ACS Energy Lett., 3 [2] 329-34 (2018). https://doi.org/10.1021/acsenergylett.7b01226
  46. Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi, and D. H. Son, "Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium," Nano Lett., 18 [6] 3716-22 (2018). https://doi.org/10.1021/acs.nanolett.8b00861
  47. D. Parobek, Y. Dong, T. Qiao, D. Rossi, and D. H. Son, "Photoinduced Anion Exchange in Cesium Lead Halide Perovskite Nanocrystals," J. Am. Chem. Soc., 139 [12] 4358-61 (2017). https://doi.org/10.1021/jacs.7b01480
  48. Y. Dong, J. Choi, H.-K. Jeong, and D. H. Son, "Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis," J. Am. Chem. Soc., 137 [16] 5549-54 (2015).
  49. G. Pan, X. Bai, D. Yang, X. Chen, P. Jing, S. Qu, L. Zhang, D. Zhou, J. Zhu, W. Xu, B. Dong, and H. Song, "Doping Lanthanide into Perovskite Nanocrystals: Highly Improved and Expanded Optical Properties," Nano Lett., 17 [12] 8005-11 (2017). https://doi.org/10.1021/acs.nanolett.7b04575
  50. Y. Shen, M. Y. Gee, R. Tan, P. J. Pellechia, and A. B. Greytak, "Purification of Quantum Dots by Gel Permeation Chromatography and the Effect of Excess Ligands on Shell Growth and Ligand Exchange," Chem. Mater., 25 [14] 2838-48 (2013). https://doi.org/10.1021/cm4012734
  51. H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao, Y. Liu, W. Yu, H. Zhang, and B. Yang, "$CsPb_xMn_{1-x}Cl_3$ Perovskite Quantum Dots with High Mn Substitution Ratio," ACS Nano, 11 [2] 2239-47 (2017). https://doi.org/10.1021/acsnano.6b08747
  52. S. Das Adhikari, S. K. Dutta, A. Dutta, A. K. Guria, and N. Pradhan, "Chemically Tailoring the Dopant Emission in Manganese-Doped $CsPbCl_3$ Perovskite Nanocrystals," Angew. Chem. Int. Ed., 56 [30], 8746-50 (2017). https://doi.org/10.1002/anie.201703863
  53. K. Xu, C. C. Lin, X. Xie, and A. Meijerink, "Efficient and Stable Luminescence from $Mn^{2+}$ in Core and Core-Isocrystalline Shell $CsPbCl_3$ Perovskite Nanocrystals," Chem. Mater., 29 [10] 4265-72 (2017). https://doi.org/10.1021/acs.chemmater.7b00345
  54. W. J. Mir, M. Jagadeeswararao, S. Das, and A. Nag, "Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets," ACS Energy Lett., 2 [3] 537-43 (2017). https://doi.org/10.1021/acsenergylett.6b00741
  55. S. Das Adhikari, A. Dutta, S. K. Dutta, and N. Pradhan, "Layered Perovskites $L_2(Pb_{1-x}Mn_x)Cl_4$ to Mn-Doped $CsPb-Cl_3$ Perovskite Platelets," ACS Energy Lett., 3 [6] 1247-53 (2018). https://doi.org/10.1021/acsenergylett.8b00653
  56. F. Li, Z. Xia, C. Pan, Y. Gong, L. Gu, Q. Liu, and J. Z. Zhang, "High $Br^-$ Content $CsPb(Cl_yBr_{1-y))_3$ Perovskite Nanocrystals with Strong $Mn^{2+}$ Emission through Diverse Cation/Anion Exchange Engineering," ACS Appl. Mater. Interfaces, 10 [14] 11739-46 (2018). https://doi.org/10.1021/acsami.7b18750
  57. S. Zou, Y. Liu, J. Li, C. Liu, R. Feng, F. Jiang, Y. Li, J. Song, H. Zeng, M. Hong, and X. Chen, "Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes," J. Am. Chem. Soc., 139 [33] 11443-50 (2017). https://doi.org/10.1021/jacs.7b04000
  58. K. Xu and A. Meijerink, "Tuning Exciton-$Mn^{2+}$ Energy Transfer in Mixed Halide Perovskite Nanocrystals," Chem. Mater., 30 [15] 5346-52 (2018). https://doi.org/10.1021/acs.chemmater.8b02157
  59. R. Beaulac, P. I. Archer, J. van Rijssel, A. Meijerink, and D. R. Gamelin, "Exciton Storage by $Mn^{2+}$ in Colloidal $Mn^{2+}$- Doped CdSe Quantum Dots," Nano Lett., 8 [9] 2949-53 (2008). https://doi.org/10.1021/nl801847e
  60. H.-Y. Chen, S. Maiti, and D. H. Son, "Doping Location- Dependent Energy Transfer Dynamics in Mn-Doped CdS/ZnS Nanocrystals," ACS Nano, 6 [1] 583-91 (2012). https://doi.org/10.1021/nn204452e
  61. W. D. Rice, W. Liu, V. Pinchetti, D. R. Yakovlev, V. I. Klimov, and S. A. Crooker, "Direct Measurements of Magnetic Polarons in $Cd_{1-x}Mn_xSe$ Nanocrystals from Resonant Photoluminescence," Nano Lett., 17 [5] 3068-75 (2017). https://doi.org/10.1021/acs.nanolett.7b00421
  62. D. Rossi, D. Parobek, Y. Dong, and D. H. Son, "Dynamics of Exciton-Mn Energy Transfer in Mn-Doped $CsPbCl_3$ Perovskite Nanocrystals," J. Phys. Chem. C, 121 [32] 17143-49 (2017). https://doi.org/10.1021/acs.jpcc.7b06182

Cited by

  1. Photons and charges from colloidal doped semiconductor quantum dots vol.7, pp.47, 2018, https://doi.org/10.1039/c9tc05150c
  2. Lead-free all-inorganic halide perovskite quantum dots: review and outlook vol.57, pp.5, 2018, https://doi.org/10.1007/s43207-020-00058-5
  3. Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109 vol.12, pp.1, 2018, https://doi.org/10.1038/s41427-020-0202-2