DOI QR코드

DOI QR Code

Immunoaffinity Characteristics of Exosomes from Breast Cancer Cells Using Surface Plasmon Resonance Spectroscopy

  • Sohn, Young-Soo (Department of Biomedical Engineering, Daegu Catholic University) ;
  • Na, Wonhwi (Nano Biofluignostics Research Center, Korea University) ;
  • Jang, Dae-Ho (Nano Biofluignostics Research Center, Korea University)
  • Received : 2019.10.24
  • Accepted : 2019.11.28
  • Published : 2019.11.30

Abstract

Exosomes, known as nanoscale extracellular vesicles in the range of 30-150 nm, are known to contain clinically significant information. However, there is still insufficient information on exosomal membrane proteins for cancer diagnosis. In this work, we investigated the characteristics of the membrane proteins of exosomes shed by cultured breast cancer cell lines using a surface plasmon resonance (SPR) spectroscopy and pre-activated alkanethiols modified sensor chips. The antibodies of breast cancer biomarkers such as MCU-16, EpCAM, CD24, ErbB2, and CA19-9 were immobilized on the pre-activated alkanethiols surfaces without any activation steps. The purified exosomes were loaded onto each antibody surface. The affinity rank of the antibody surfaces was decided by the relative capture efficiency factors for the exosomes. In addition, an antibody with a relative capture efficiency close to 100% was tested with exosome concentration levels of 104/µl, 105/µl, and 106/µl for quantitative analysis.

Keywords

References

  1. C. Lawson, J. M. Vicencio, D. M. Yellon, and S. M. Davidson, "Microvesicles and exosomes: new players in metabolic and cardiovascular disease", J. Endocrinol., Vol. 288, pp. R57-R71, 2016.
  2. S. H. Jalalian, M. Ramezani, S. A. Jalalian, K. Abnous, and S. M. Taghdisi, "Exosomes, new biomarkers in early cancer detection", Anal. Biochem., Vol. 571, pp. 1-13, 2019. https://doi.org/10.1016/j.ab.2019.02.013
  3. L. Console, M. Scalise, and C. Indiveri, "Exosomes in inflammation and role as biomarkers", Clin. Chim. Acta, Vol. 488, pp. 165-171, 2019. https://doi.org/10.1016/j.cca.2018.11.009
  4. M. R. Fernando, C. Jiang, G. D. Krzyzanowski, and W. L. Ryan, "New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes," PLoS ONE, Vol. 12, pp. e0183915(1)-e0183915(15), 2017. https://doi.org/10.1371/journal.pone.0183915
  5. T. Pisitkun, R. F. Shen, and M. A. Knepper, "Identification and proteomic profiling of exosomes in human urine", Proc. Natl. Acad. Sci. U.S.A., Vol. 101, pp. 13368-13373, 2004. https://doi.org/10.1073/pnas.0403453101
  6. V. Palanisamy, S. Sharma, A. Deshpande, H. Zhou, J. Gimzewski, and D. T. Wong, "Nanostructural and transcriptomic analyses of human saliva derived exosomes", PLoS ONE, Vol. 5, pp. e8577(1)-e8577(11), 2010. https://doi.org/10.1371/journal.pone.0008577
  7. C. Admyre, S. M. Johansson, K. R. Qazi, J.-J. Filen, R. Lahesmaa, M. Norman, E. P. A. Neve, A. Scheynius, and S. Gabrielsson, "Exosomes with Immune Modulatory Features Are Present in Human Breast Milk", J. Immunol., Vol. 179, pp. 1969-1978, 2007. https://doi.org/10.4049/jimmunol.179.3.1969
  8. S. W. Ferguson and J, Nguyen, "Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity", J. Control. Release, Vol. 228, pp. 179-190, 2016. https://doi.org/10.1016/j.jconrel.2016.02.037
  9. C. Beyer and D. S. Pisetsky, "The role of microparticles in the pathogenesis of rheumatic diseases", Nat. Rev. Rheumatol., Vol. 6, pp. 21-29, 2010. https://doi.org/10.1038/nrrheum.2009.229
  10. D. L. M. Rupert, C. Lasser, M. Eldh, S. Block, V. P. Zhdanov, J. O. Lotvall, M. Bally, and F. Hook, "Determination of Exosome Concentration in Solution Using Surface Plasmon Resonance Spectroscopy", Anal. Chem., Vol. 86, pp. 5929-5936, 2014. https://doi.org/10.1021/ac500931f
  11. L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal, "Global cancer statistics, 2012", CA. Cancer J. Clin., Vol. 65, pp. 87-108, 2015. https://doi.org/10.3322/caac.21262
  12. R. Siegel, D. Naishadham, and A. Jemal, "Cancer statistics, 2012", CA. Cancer J. Clin., Vol. 62, pp. 10-29, 2012. https://doi.org/10.3322/caac.20138
  13. S. Reinartz, S. Failer, T. Schuell, and U. Wagner, "CA125 (MUC16) gene silencing suppresses growth properties of ovarian and breast cancer cells", Eur. J. Cancer, Vol. 48, pp. 1558-1569, 2012. https://doi.org/10.1016/j.ejca.2011.07.004
  14. N. M. R. Abd El-Maqsoud and D. M. Abd El-Rehim, "Clinicopathologic Implications of EpCAM and Sox2 Expression in Breast Cancer", Clin. Breast Cancer, Vol. 14, pp. e1-e9, 2014. https://doi.org/10.1016/j.clbc.2013.09.006
  15. K. Suyama, H. Onishi, A. Imaizumi, K. Shinkai, M. Umebayashi, M. Kubo, Y. Mizuuchi, Y. Oda, M. Tanaka, M. Nakamura, and M. Katano, "CD24 suppresses malignant phenotype by downregulation of SHH transcription through STAT1 inhibition in breast cancer cells", Cancer Lett., Vol. 374, pp. 44-53, 2016. https://doi.org/10.1016/j.canlet.2015.12.013
  16. U. Eletxigerra, J. Martinez-Perdiguero, S. Merino, R. Barderas, R. M. Torrente-Rodriguez, R. Villalonga, J. M. Pingarron, and S. Campuzano, "Amperometric magnetoimmunosensor for ErbB2 breast cancer biomarker determination in human serum, cell lysates and intact breast cancer cells", Biosens. Bioelectron., Vol. 70, pp. 34-41, 2015. https://doi.org/10.1016/j.bios.2015.03.017
  17. W. Wang, X. Xu, B. Tian, Y. Wang, L. Du, T. Sun, Y. Shi, X. Zhao, and J. Jing, "The diagnostic value of serum tumor markers CEA. CA19-9, CA125, CA15-3, and TPS in metastatic breast cancer", Clin. Chim. Acta, Vol. 470, pp. 51-55, 2017. https://doi.org/10.1016/j.cca.2017.04.023
  18. H. Sipova and J. Homola, "Surface plasmon resonance sensing of nucleic acids: A review", Anal. Chim. Acta, Vol. 773, pp. 9-23, 2013. https://doi.org/10.1016/j.aca.2012.12.040
  19. C. Liu, F. Hu, W. Yang, J. Xu, and Y. A. Chen, "Critical review of advances in surface plasmon resonance imaging sensitivity", Trends Anal. Chem., Vol. 97, pp. 354-362, 2017. https://doi.org/10.1016/j.trac.2017.10.001
  20. C. Lertvachirapaiboon, A. Baba, S. Ekgasit, K. Shinbo, K. Kato, and F. Kaneko, "Transmission surface plasmon resonance techniques and their potential biosensor applications", Biosens. Bioelectron., Vol. 99, pp. 399-415, 2018. https://doi.org/10.1016/j.bios.2017.07.069
  21. C. G. Zhang, S. J. Chang, K. Settu, C. J. Chen, and J. T. Liu, "High-sensitivity glycated hemoglobin (HbA1c) aptasensor in rapid-prototyping surface plasmon resonance", Sens. Actuators B, Vol. 279, pp. 267-273, 2019. https://doi.org/10.1016/j.snb.2018.09.077
  22. S. G. Patching, "Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery," Biochim. Biophys. Acta Biomembr., Vol. 1838, pp. 43-55, 2014. https://doi.org/10.1016/j.bbamem.2013.04.028
  23. M. Mahmoudpour, J. E. N. Dolatabadi, M. Torbati, and A. Homayouni-Rad, "Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions", Biosens. Bioelectron., Vol. 127, pp. 72-84, 2019. https://doi.org/10.1016/j.bios.2018.12.023
  24. B. J. Yakes, J. Buijs, C. T. Elliott, and K. Campbell, "Surface plasmon resonance biosensing: Approaches for screening and characterizing antibodies for food diagnostics", Talanta, Vol. 156-157, pp. 55-63, 2016. https://doi.org/10.1016/j.talanta.2016.05.008
  25. O. P. Kallioniemi, A. Kallioniemi, W. Kurisu, A. Thor, L. C. Chen, H. S. Smith, F. M. Waldman, D. Pinkel, and J. W. Gray, "ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization", Proc. Natl. Acad. Sci. U.S.A., Vol. 89, pp. 5321-5325, 1992. https://doi.org/10.1073/pnas.89.12.5321
  26. I. Helwa, J. Cai, M. D. Drewry, A. Zimmerman, M. B. Dinkins, M. L. Khaled, M. Seremwe, W. Michael Dismuke, E. Bieberich, W. D. Stamer, M. W. Hamrick, and Y. Liu, "Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents", PLoS ONE, Vol. 12, pp. e0170628(1)-e0170628(22), 2017. https://doi.org/10.1371/journal.pone.0170628