DOI QR코드

DOI QR Code

Numerical Study of Forced Convection Nanofluid in Double Pipe

이중관 내부 나노유체의 강제대류에 관한 수치적 연구

  • Lim, Yun-Seung (Mechanical Engineering, Changwon National University) ;
  • Choi, Hoon-Ki (Mechanical Engineering, Changwon National University)
  • 임윤승 (창원대학교 기계공학부 대학원) ;
  • 최훈기 (창원대학교 기계공학부)
  • Received : 2019.10.18
  • Accepted : 2019.12.20
  • Published : 2019.12.28

Abstract

Numerical study was performed to investigate the convective heat transfer of Al2O3/water nanofluid flowing through the concentric double pipe counterflow heat exchangers. Hot fluid flowing through the inner pipe transfers its heat to cooling fluid flowing in the outer pipe. Effects of important parameters such as hot and cold volume flow rates, fluid type in the outer and inner pipes, and nanoparticles concentration on the heat transfer and flow characteristics are investigated. The results indicated that the heat transfer performance increases with increasing the hot and cold volume flow rates, as well as the particle concentrations. When both outer and inner pipes are nanofluids with 8% nanoparticle volume concentration, nanofluids showed up to 17% better heat transfer rate than basic fluids. Also, the average heat transfer coefficient of the base fluid for annulus-side improved by 31%. Approximately 20% enhancement in the heat exchanger effectiveness can be achieved with the addition of 8% alumina particles in base fluid. But, addition of nanoparticles to the base fluid enhanced friction factor by about 196%.

동심 이중관에서 기본유체 물과 나노입자 산화알미늄의 혼합인 나노유체를 적용한 대향유동을 유한체적법의 수치적 방법으로 열전달 특성을 규명하였다. 고온유체는 내부 원형관으로 흐르며 열을 외부 환형관으로 흐르는 저온유체로 전달한다. 고온유체와 저온유체의 체적유량 및 나노입자의 체적농도를 변수로 두어 열전달 및 유동 특성을 조사했다. 결과는 나노입자의 체적농도와 체적유량의 증가함에 따라 열전달 성능이 증가함을 보였다. 외부와 내부 관 모두에서 나노유체인 경우가 기본유체보다 나노입자의 체적농도가 8%일 때 나노유체가 열전달 성능이 최대 17% 증가하는 것을 확인했다. 또한 기본유체에 비해 환형관의 대류열전달 계수는 최대 31% 증가함을 보였으며 열교환기의 유용도는 약 20%가 상승함을 확인하였다. 하지만 나노입자의 체적농도가 8%일때 마찰인자가 최대 136% 커지는 것을 확인하였다.

Keywords

References

  1. J. C. Maxwell. (1873). Electricity and Magnetism, Clarendon Press, Oxford, UK
  2. S. U. S. Choi. (1995). Enhancing thermal conductivity of fluid with nanoparticles. Developments and Applications of Non-Newtonian Flow. ASME, FED 231/MD, 66, 99-105.
  3. S. Lee, S. U. S. Choi, S. Li & J. A. Eastman. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf, 121, 280-289. https://doi.org/10.1115/1.2825978
  4. H. Masuda, A. Ebata, K. Teramae & N. Hishinuma. (1993). Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersions Of -Al2O3, SiO2, and TiO2 Ultra-Fine Particles). Netsu Bussei (Japan), 4, 227-233.
  5. Y. M. Xuan & Q. Li. (2000). Heat transfer enhancement of nanofluids. Int. J. Heat Transfer, 21, 58-64.
  6. Y. M. Xuan & W. Roetze. (2000). Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf. 43, 3701-3707. https://doi.org/10.1016/S0017-9310(99)00369-5
  7. P. Keblinski, S. R. Phillpot, S. U. S. Choi & J. A. Eastman. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluid), Int. J. Heat Mass Transf, 45, 855-863. https://doi.org/10.1016/S0017-9310(01)00175-2
  8. B. C. Pak & Y. I. Cho. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer, 11, 151-170. https://doi.org/10.1080/08916159808946559
  9. U. Rea, T. McKrell, L. Hu & J. Buongiorno. (2009). Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids. Int. J. Heat Mass Transf, 52, 2042-2048. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.025
  10. S. Mirmasoumi & A. Behzadmehr. (2008). Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube. Int. J. Heat Fluid Flow, 29, 557-566. https://doi.org/10.1016/j.ijheatfluidflow.2007.11.007
  11. S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy & N. Galanis. (2005). Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows. Int. J. Heat and Fluid Flow, 26(4), 530-546. https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004
  12. H. K. Choi & G. J. Yoo. (2014). Numerical study on nanofluids forced convection in circular tubes. J. Comput. Fluids Eng, 19, 37-43.
  13. Y. Ding & D. Wen. (2005). Particle migration in a flow of nanoparticle suspensions. Powder Technol. 149, 84-92. https://doi.org/10.1016/j.powtec.2004.11.012
  14. H. K. Choi & Y. S. Lim. (2019). Numerical study of mixed convection nanofluid in horizontal tube. J. of Convergence for Information Technology, 9, 155-163.
  15. A. Behzadmehr, M. Saffar-Avval & N. Galanis. (2007) Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two-phase approach. Int. J. Heat Fluid Flow, 28, 211-219. https://doi.org/10.1016/j.ijheatfluidflow.2006.04.006
  16. S. C. Gupta & V. K. Garg. (1981). Developing flow in a concentric annulus. Comput. Meth. Appl. Mech. 28, 27-35. https://doi.org/10.1016/0045-7825(81)90024-4
  17. M. A. I. El-Shaarawiy & M. K. Alkam. (1992). Transient forced convection in the entrance region of concentric annuli. Int. J. Heat Mass Transf. 35, 3335-3344. https://doi.org/10.1016/0017-9310(92)90220-M
  18. G. Lu & J. Wang. (2008). Experimental investigation on heat transfer characteristics of water flow in a narrow annulus. Appl. Therm. Eng. 28 , 8-13. https://doi.org/10.1016/j.applthermaleng.2007.03.019
  19. A. N. S. Y. S. Fluent. (2019). ANSYS Fluent User Guide V.19.1, Southpointe : ANSYS, Inc.
  20. K. Khanafer & K. Vafai. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54, 4010-4428.
  21. R.S. Vajjha & D.K. Das. (2009). Experimental determination of thermal conductivity of three nanofluids and development of new correlations. International Journal of Heat and Mass Transfer, 52, 4675-4682. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027
  22. S. A. Zonouzi, H. Aminfar & M. Mohammadpourfard. (2014). 3D Numerical Investigation of Thermal Characteristics of Nanofluid Flow through Helical Tubes Using Two-Phase Mixture Model. International Journal for Computational Methods in Engineering Science and Mechanics, 15, 512-521. https://doi.org/10.1080/15502287.2014.952847
  23. D. H. Kim et al. (2009). Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Current Applied Physics, 9, 119-123.