References
- P. Loyselle, K. Prokopius, Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant; Ohio, 2011.
- S. Byun, D. Kwak, J. Electrochem. Sci. Technol., 2019, 10(2), 104-114. https://doi.org/10.5229/jecst.2019.10.2.104
- M. Mortazavi, A. D. Santamaria, V. Chauhan, J. Z. Benner, J. Electrochem. Soc., 2019, 166(7), F3143-F3153. https://doi.org/10.1149/2.0211907jes
- V. Palan, S. W. J. Shepard, A. K. Williams, J. Power Sources, 2006, 161(2), 1116-1125. https://doi.org/10.1016/j.jpowsour.2006.06.021
- A. Theodorakakos, T. Ous, M. Gavaises, J. M. Nouri, N. Nikolopoulos, H. Yanagihara, J. Colloid Interface Sci., 2006, 300(2), 673-687. https://doi.org/10.1016/j.jcis.2006.04.021
- X. Zhu, Q. Liao, P. C. Sui, N. Djilali, J. Power Sources, 2010, 195(3), 801-812. https://doi.org/10.1016/j.jpowsour.2009.08.021
- L. Hao, P. Cheng, Int. J. Heat Mass Transf., 2010, 53(5-6), 1243-1246. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.010
- C. Qin, D. Rensink, S. Hassanizadeh, J. Electrochem. Soc., 2012, 159(4), 434-443. https://doi.org/10.1149/2.004205jes
- S. C. Cho, Y. Wang, K. S. Chen, J. Power Sources, 2012, 210, 191-197. https://doi.org/10.1016/j.jpowsour.2012.03.033
- A. Bazylak, D. Sinton, N. Djilali, J. Power Sources, 2008, 176(1), 240-246. https://doi.org/10.1016/j.jpowsour.2007.10.066
- A. Kumar, R. G. Reddy, J. Power Sources, 2003, 114(1), 54-62. https://doi.org/10.1016/S0378-7753(02)00540-2
- C. Hartnig, I. Manke, R. Kuhn, S. Kleinau, J. Goebbels, J. Banhart, J. Power Sources, 2009, 188(2), 468-474. https://doi.org/10.1016/j.jpowsour.2008.12.023
- S. Cho, M. Cha, M. Kim, Y. Sohn, T. Yang, W. Lee, J. Electrochem. Sci. Technol., 2016, 7(1), 41-51. https://doi.org/10.33961/JECST.2016.7.1.41
- P. D. M. Spelt, J. Comput. Phys., 2005, 207(2), 389-404. https://doi.org/10.1016/j.jcp.2005.01.016
- L. W. Schwartz, D. Roux, J. J. Cooper White, Phys. D, 2005, 209(July), 236-244. https://doi.org/10.1016/j.physd.2005.07.001
- Y. Y. Koh, Y. C. Lee, P. H. Gaskell, P. K. Jimack, H. M. Thompson, Eur. Phys. J. Spec. Top., 2009, 166, 117-120. https://doi.org/10.1140/epjst/e2009-00890-2
- J. B. Dupont, D. Legendre, J. Comput. Phys., 2010, 229(7), 2453-2478. https://doi.org/10.1016/j.jcp.2009.07.034
- L. de Oliveira, D. Lopes, S. Ramos, J. Mombach, Soft Matter, 2011, 7, 3763-3765. https://doi.org/10.1039/c0sm01178a
- A. S. Ravi, J. Y. Murthy, S. V. Garimella, Int. J. Heat Mass Transf., 2012, 55(5-6), 1466-1474. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.028
- G. Ahmed, M. Sellier, Y. C. Lee, M. Jermy, M. Taylor, Colloids Surfaces A Physicochem. Eng. Asp., 2013, 432, 2-7. https://doi.org/10.1016/j.colsurfa.2013.05.015
- G. Ahmed, M. Sellier, M. Jermy, M. Taylor, Eur. J. Mech. B/Fluids, 2014, 48, 218-230. https://doi.org/10.1016/j.euromechflu.2014.06.003
- C. Lee, S. Lyu, J. W. Park, W. Hwang, Adv. Eng. Softw., 2016, 91, 44-50. https://doi.org/10.1016/j.advengsoft.2015.10.001
- K. W. Yong, P. B. Ganesan, S. N. Kazi, S. Ramesh, I. A. Badruddin, N. M. Mubarak, Phys. Fluids, 2018, 30(12), 122006. https://doi.org/10.1063/1.5063857
- X. Liu, P. Cheng, X. Quan, Int. J. Heat Mass Transf., 2014, 73, 195-200. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.060
- F. Liu, G. Ghigliotti, J. J. Feng, C. H. Chen, J. Fluid Mech., 2014, 752(2014), 22-38. https://doi.org/10.1017/jfm.2014.319
- X. Liu, P. Cheng, Int. Commun. Heat Mass Transf., 2015, 64, 7-13. https://doi.org/10.1016/j.icheatmasstransfer.2015.03.002
- S. Farokhirad, J. F. Morris, T. Lee, Phys. Fluids, 2015, 27(10).
- Y. Shi, G. H. Tang, H. H. Xia, Int. J. Heat Mass Transf., 2015, 88(4), 445-455. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.085
- Z. Khatir, K. J. Kubiak, P. K. Jimack, T. G. Mathia, Appl. Therm. Eng., 2016, 106, 1337-1344. https://doi.org/10.1016/j.applthermaleng.2016.06.128
- L. Zhang, W. Yuan, Appl. Surf. Sci., 2018, 436, 172-182. https://doi.org/10.1016/j.apsusc.2017.11.200
- F. Chu, Z. Yuan, X. Zhang, X. Wu, Int. J. Heat Mass Transf., 2018, 121, 315-320. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.027
- Y. Shi, G. H. Tang, Comput. Math. with Appl., 2018, 75(4), 1213-1225. https://doi.org/10.1016/j.camwa.2017.10.024
- G. Londe, A. Chunder, A. Wesser, L. Zhai, H. Cho, Sensors Actuators B Chem., 2008, 132(2), 431-438. https://doi.org/10.1016/j.snb.2007.10.052
- J. P. La, A. Jonsson, S. Senkbeil, J. P. Kutter, Biosens. Bioelectron., 2016, 76, 213-233. https://doi.org/10.1016/j.bios.2015.08.003
- S. H. Jin, H. H. Jeong, B. Lee, S. S. Lee, C. S. Lee, Lab Chip, 2015, 15(18), 3677-3686. https://doi.org/10.1039/C5LC00651A
- M. Sakai, J. H. Song, N. Yoshida, S. Suzuki, Y. Kameshima, A. Nakajima, Langmuir, 2006, 22(11), 4906-4909. https://doi.org/10.1021/la060323u
- A. Nakajima, K. Hashimoto, T. Watanabe, Monatshefte fuer Chemie, 2001, 132(1), 31-41. https://doi.org/10.1007/s007060170142
- V. P. Carey, Liquid-Vapor Phase Change Phenomena, 2nd ed.; Scholl, S., Ed.; Taylor & Francis Group: New York, 2008.
- R. N. Wenzel, J. Phys. Colloid Chem., 1949, 53(9), 1466-1467. https://doi.org/10.1021/j150474a015
- A. B. D. Cassie, S. Baxter, Trans. Faraday Soc., 1944, 40, 546. https://doi.org/10.1039/tf9444000546
- E. Bormashenko, P. Faculty, Adv. Colloid Interface Sci., 2015, 222, 92-103. https://doi.org/10.1016/j.cis.2014.02.009
- J. Cui, W. Li, W. H. Lam, Comput. Math. with Appl., 2011, 61(12), 3678-3689. https://doi.org/10.1016/j.camwa.2010.07.037
- X. T. Zhu, Z. Z. Zhang, X. h. Xu, X. h. Men, J. Yang, X. y. Zhou, Q. J. Xue, J. Colloid Interface Sci., 2012, 367(1), 443-449. https://doi.org/10.1016/j.jcis.2011.10.008
- D. Khojasteh, M. Kazerooni, S. Salarian, R. Kamali, J. Ind. Eng. Chem., 2016, 42(2016), 1-14. https://doi.org/10.1016/j.jiec.2016.07.027
- G. Mchale, N. J. Shirtcliffe, M. I. Newton, Langmuir, 2004, 20, 10146-10149. https://doi.org/10.1021/la0486584
- B. He, J. Lee, N. A. Patankar, Colloids Surfaces A Physicochem. Eng. Asp., 2004, 248(2004), 101-104. https://doi.org/10.1016/j.colsurfa.2004.09.006
- B. He, N. A. Patankar, J. Lee, Langmuir, 2003, 19, 4999-5003. https://doi.org/10.1021/la0268348
- N. A. Patankar, Langmuir, 2003, 19, 1249-1253. https://doi.org/10.1021/la026612+
- J. Bico, C. Marzolin, D. Qu, Europhys. Lett., 1999, 47(July), 220-226. https://doi.org/10.1209/epl/i1999-00548-y
- J. Min, R. L. Webb, Exp. Therm. Fluid Sci., 2000, 22(3-4), 175-182. https://doi.org/10.1016/S0894-1777(00)00024-8
- E. Moallem, S. Padhmanabhan, L. Cremaschi, D. E. Fisher, Int. J. Refrig., 2012, 35(1), 171-186. https://doi.org/10.1016/j.ijrefrig.2011.08.010
- P. B. Ganesan, S. M. Vanakia, K. K. Thoo, W. M. Chin, Int. Commun. Heat Mass Transf., 2016, 74, 27-35. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.017
- F. Chu, X. Wu, Q. Ma, Appl. Therm. Eng., 2017, 115, 1101-1108. https://doi.org/10.1016/j.applthermaleng.2017.01.060
- H. W. Hu, G. H. Tang, D. Niu, Appl. Therm. Eng., 2016, 100, 699-707. https://doi.org/10.1016/j.applthermaleng.2016.02.086
- D. E. Kim, H. S. Ahn, T. S. Kwon, Appl. Therm. Eng., 2017, 110, 412-423. https://doi.org/10.1016/j.applthermaleng.2016.08.175
- J. B. Boreyko, C. P. Collier, ACS Nano, 2013, 7(2), 1618-1627. https://doi.org/10.1021/nn3055048
- Q. Zhang, M. He, J. Chen, J. Wang, Y. Song, L. Jiang, Chem. Commun., 2013, 49(40), 4516. https://doi.org/10.1039/c3cc40592c
- L. Cao, A. K. Jones, V. K. Sikka, J. Wu, D. Gao, Langmuir, 2009, 25(21), 12444-12448. https://doi.org/10.1021/la902882b
- F. Tavakoli, H. P. Kavehpour, Langmuir, 2015, 31, 2120-2126. https://doi.org/10.1021/la503620a
- M. Kim, H. Kim, K. Lee, D. R. Kim, Energy Convers. Manag., 2017, 138, 1-11. https://doi.org/10.1016/j.enconman.2017.01.067
- X. Li, L. Zhang, X. Ma, H. Zhang, Surf. Coat. Technol., 2016, 307(2016), 243-253. https://doi.org/10.1016/j.surfcoat.2016.08.089
- R. Kamali, D. Khojasteh, S. M. Mousavi, In 24th Annual International Conference on Mechanical Engineering; 2016; p 24486.
- N. D. Patil, V. H. Gada, A. Sharma, R. Bhardwaj, Int. J. Multiph. Flow, 2016, 81, 54-66. https://doi.org/10.1016/j.ijmultiphaseflow.2016.01.005
- N. Patil, R. Bhardwaj, Int. J. Micro-Nano Scale Transp., 2014, 5(2), 51-58. https://doi.org/10.1260/1759-3093.5.2.51
- J. R. Moffat, K. Sefiane, M. E. R. Shanahan, J. Nano Res., 2009, 7, 75-80. https://doi.org/10.4028/www.scientific.net/JNanoR.7.75
- G. McHale, S. M. Rowan, M. I. Newton, M. K. Banerjee, J. Phys. Chem. B, 1998, 102(11), 1964-1967. https://doi.org/10.1021/jp972552i
- W. K. Choi, E. Lebrasseur, M. I. Al-Haq, H. Tsuchiya, T. Torii, H. Yamazaki, E. Shinohara, T. Higuchi, Sensors Actuators, A Phys., 2007, 136(1), 484-490. https://doi.org/10.1016/j.sna.2006.12.028
- H. Ren, R. B. Fair, M. G. Pollack, Sensors Actuators B Chem., 2004, 98(2-3), 319-327. https://doi.org/10.1016/j.snb.2003.09.030
- P. Onnerfjord, J. Nilsson, L. Wallman, T. Laurell, G. Marko-Varga, Anal. Chem., 1998, 70(22), 4755-4760. https://doi.org/10.1021/ac980207z
- S. Suzuki, A. Nakajima, Y. Kameshima, K. Okada, Surf. Sci. Lett., 2004, 557. https://doi.org/10.1016/0167-2584(87)91251-5
- N. Yoshida, Y. Abe, H. Shigeta, A. Nakajima, H. Ohsaki, J. Am. Chem. Soc., 2006, 128(13), 743-747. https://doi.org/10.1021/ja050617m
- M. Sakai, Surf. Sci., 2006, 600, L204-L208. https://doi.org/10.1016/j.susc.2006.06.039
- Z. Yoshimitsu, A. Nakajima, T. Watanabe, Langmuir, 2002, 18, 5818-5822. https://doi.org/10.1021/la020088p
- W. Yeong, L. Ling, T. Wah, A. Neild, Q. Zheng, J. Colloid Interface Sci., 2011, 354(2), 832-842. https://doi.org/10.1016/j.jcis.2010.11.027
- N. Thanh vinh, H. Takahashi, K. Matsumoto, I. Shimoyama, Sensors Actuators A. Phys., 2015, 231(2015), 35-43. https://doi.org/10.1016/j.sna.2014.09.015
- H. Wang, L. Tang, X. Wu, W. Dai, Y. Qiu, Appl. Surf. Sci., 2007, 253(22), 8818-8824. https://doi.org/10.1016/j.apsusc.2007.04.006
- Z. Jin, H. Zhang, Z. Yang, Int. J. Heat Mass Transf., 2016, 103(2016), 886-893. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.012
- S. Wang, X. Yu, C. Liang, Y. Zhang, Appl. Therm. Eng., 2018, 137(April), 758-766. https://doi.org/10.1016/j.applthermaleng.2018.04.020
- R. P. Garrod, L. G. Harris, W. C. E. Schofield, J. Mcgettrick, L. J. Ward, D. O. H. Teare, J. P. S. Badyal, Langmuir, 2007, 23, 689-693. https://doi.org/10.1021/la0610856
- J. B. Marcinichen, J. A. Olivier, V. de Oliveira, J. R. Thome, Appl. Energy, 2012, 92, 147-161. https://doi.org/10.1016/j.apenergy.2011.10.030
- K. Ellinas, V. Pliaka, G. Kanakaris, A. Tserepi, L. G. Alexopoulos, E. Gogolides, Microelectron. Eng., 2017, 175, 73-80. https://doi.org/10.1016/j.mee.2017.02.015
- K. Ellinas, A. Tserepi, E. Gogolides, Microfluid. Nanofluidics, 2014, 17(3), 489-498. https://doi.org/10.1007/s10404-014-1335-9
- A. P. Washe, P. Lozano S., D. Bejarano N., B. Teixeira D., I. Katakis, Microelectron. Eng., 2013, 111, 416-420. https://doi.org/10.1016/j.mee.2013.04.022
- T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir, 1996, 12(9), 2125-2127. https://doi.org/10.1021/la950418o
- W. Fang, H. Mayama, K. Tsujii, Colloids Surfaces A Physicochem. Eng. Asp., 2008, 316(1-3), 258-265. https://doi.org/10.1016/j.colsurfa.2007.09.010
- H. Yan, H. Shiga, E. Ito, T. Nakagaki, S. Takagi, T. Ueda, K. Tsujii, Colloids Surfaces A Physicochem. Eng. Asp., 2006, 284-285, 490-494. https://doi.org/10.1016/j.colsurfa.2005.10.083
- S. Shibuichi, T. Yamamoto, T. Onda, K. Tsujii, J. Colloid Interface Sci., 1998, 208(1), 287-294. https://doi.org/10.1006/jcis.1998.5813
- T. He, Y. Wang, Y. Zhang, Q. lv, T. Xu, T. Liu, Corros. Sci., 2009, 51(8), 1757-1761. https://doi.org/10.1016/j.corsci.2009.04.027
- H. Saffari, B. Sohrabi, M. R. Noori, H. R. T. Bahrami, Appl. Surf. Sci., 2018, 435, 1322-1328. https://doi.org/10.1016/j.apsusc.2017.11.188
- Y. Wu, M. Bekke, Y. Inoue, H. Sugimura, H. Kitaguchi, C. Liu, O. Takai, Thin Solid Films, 2004, 457(1), 122-127. https://doi.org/10.1016/j.tsf.2003.12.007
- Y. Wu, Y. Inoue, H. Sugimura, O. Takai, H. Kato, S. Murai, H. Oda, Thin Solid Films, 2002, 407(1-2), 45-49. https://doi.org/10.1016/S0040-6090(02)00010-X
- Y. Wu, Surf. Sci., 2006, 600, 3710-3714. https://doi.org/10.1016/j.susc.2006.01.073
- W. Barthlott, C. Neinhuis, Planta, 1997, 202(1), 1-8. https://doi.org/10.1007/s004250050096
- E. Ueda, P. A. Levkin, Adv. Mater., 2013, 25(9), 1234-1247. https://doi.org/10.1002/adma.201204120
- B. L. Feng, S. H. Li, Y. S. Li, H. J. Li, L. J. Zhang, J. Zhai, Y. L. Song, B. Q. Liu, L. Jiang, ... D. B. Zhu, Adv. Mater., 2002, 14(24), 1857-1860. https://doi.org/10.1002/adma.200290020
- S. Gogte, P. Vorobieff, R. Truesdell, A. Mammoli, F. van Swol, P. Shah, C. J. Brinker, Phys. Fluids, 2005, 17(5), 1-4.
- H. Matsui, Y. Noda, T. Hasegawa, Langmuir, 2012, 28(2012), 15450-15453. https://doi.org/10.1021/la303717n
- J. Drelich, J. L. Wilbur, J. D. Miller, G. M. Whitesides, Langmuir, 1996, 12, 1913-1922. https://doi.org/10.1021/la9509763
- S. Suzuki, A. Nakajima, K. Tanaka, Appl. Surf. Sci., 2008, 254, 1797-1805. https://doi.org/10.1016/j.apsusc.2007.07.171
- B. Chang, Q. Zhou, R. H. A. Ras, A. Shah, Z. Wu, K. Hjort, Appl. Phys. Lett., 2016, 108(15), 154102. https://doi.org/10.1063/1.4947008
- Y. Lin, Z. Wu, Y. Gao, J. Wu, W. Wen, Appl. Surf. Sci., 2018, 442, 189-194. https://doi.org/10.1016/j.apsusc.2018.02.055
- J. Huang, R. Fan, S. Connor, P. Yang, Angew. Chemie Int. Ed., 2007, 46(14), 2414-2417. https://doi.org/10.1002/anie.200604789
- X. Xu, Y. Di, M. Doi, 2016, 087101.
- A. I. ElSherbini, A. M. Jacobi, J. Colloid Interface Sci., 2004, 273(2), 556-565. https://doi.org/10.1016/j.jcis.2003.12.067
- A. I. ElSherbini, A. M. Jacobi, J. Colloid Interface Sci., 2004, 273(2), 566-575. https://doi.org/10.1016/j.jcis.2003.12.043
- A. I. ElSherbini, A. M. Jacobi, J. Colloid Interface Sci., 2006, 299(2), 841-849. https://doi.org/10.1016/j.jcis.2006.02.018
- B. Krasovitski, A. Marmur, Langmuir, 2005, 21, 3881-3885. https://doi.org/10.1021/la0474565
- X. G. Yang, F. Y. Zhang, A. L. Lubawy, C. Y. Wang, 2004, 408-411.
- B. Peng, S. Wang, Z. Lan, W. Xu, R. Wen, X. Ma, Appl. Phys. Lett., 2013, 102(15).
- N. Miljkovic, D. J. Preston, R. Enright, E. N. Wang, ACS Nano, 2013, 7(12), 11043-11054. https://doi.org/10.1021/nn404707j
- J. B. Boreyko, C. H. Chen, Phys. Rev. Lett., 2009, 103(18), 184501. https://doi.org/10.1103/PhysRevLett.103.184501
- Y. Nam, H. Kim, S. Shin, Appl. Phys. Lett., 2013, 103(16).
- L. Z. Zhang, W. Z. Yuan, Appl. Surf. Sci., 2018, 436, 172-182. https://doi.org/10.1016/j.apsusc.2017.11.200
- Y. Hou, H. Deng, Q. Du, K. Jiao, J. Power Sources, 2018, 393(February), 83-91. https://doi.org/10.1016/j.jpowsour.2018.05.008
- J. Yu, D. Froning, U. Reimer, W. Lehnert, Int. J. Hydrogen Energy, 2018, 43(12), 6318-6330. https://doi.org/10.1016/j.ijhydene.2018.01.168
- D. G. Venkateshan, H. V. Tafreshi, Colloids Surfaces A Physicochem. Eng. Asp., 2018, 538(October 2017), 310-319. https://doi.org/10.1016/j.colsurfa.2017.11.003
- X. Shang, Z. Luo, E. Ya, O. A. Kabov, B. Bai, Comput. Fluids, 2018, 172, 181-195. https://doi.org/10.1016/j.compfluid.2018.06.021
- P. Gopalan, S. G. Kandlikar, Colloids Surfaces A Physicochem. Eng. Asp., 2014, 441, 262-274. https://doi.org/10.1016/j.colsurfa.2013.09.013
- P. Gopalan, S. G. Kandlikar, J. Electrochem. Soc., 2013, 160(6), F487-F495. https://doi.org/10.1149/2.030306jes
- X. Zhu, P. C. Sui, N. Djilali, J. Power Sources, 2008, 181(1), 101-115. https://doi.org/10.1016/j.jpowsour.2008.03.005
- C. W. Hirt, B. D. Nichols, J. Comput. Phys., 1981, 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
- X. Shan, H. Chen, Phys. Rev. E, 1994, 49(4), 2941-2948. https://doi.org/10.1103/PhysRevE.49.2941
- L. W. Schwartz, Lanngmuir, 1998, 14, 3440-3453. https://doi.org/10.1021/la971407t
- M. R. Barkhudarov, Semi-Lagrangian VOF Advection Method for FLOW-3D; 2003; Vol. FSI-03-TN6.
- D. A. Perumal, A. K. Dass, Alexandria Eng. J., 2015, 54(4), 955-971. https://doi.org/10.1016/j.aej.2015.07.015
- X. He, L. Luo, Phys. Rev. E, 1997, 56(6), 6811-6817. https://doi.org/10.1103/PhysRevE.56.6811
- Q. Li, K. H. Luo, X. J. Li, Phys. Rev. E, 2013, 87(5), 053301. https://doi.org/10.1103/PhysRevE.87.053301
- A. D. Schleizer, R. T. Bonnecaze, J. Fluid Mech., 1999, 383(July), 29-54. https://doi.org/10.1017/S0022112098003462
- B. Lavi, A. Marmur, Colloids Surfaces A Physicochem. Eng. Asp., 2004, 250(1-3 SPEC. ISS.), 409-414. https://doi.org/10.1016/j.colsurfa.2004.04.079
- S. M. M. Ramos, A. Benyagoub, B. Canut, C. Jamois, Langmuir, 2010, 26(7), 5141-5146. https://doi.org/10.1021/la9036138
- T. Podgorski, J. M. Flesselles, L. Limat, Phys. Rev. Lett., 2001, 87(3), 361021-361024.
- S. Kulju, L. Riegger, P. Koltay, K. Mattila, J. Hyvaluoma, J. Colloid Interface Sci., 2018, 522(2018), 48-56. https://doi.org/10.1016/j.jcis.2018.03.053
- P. T. Yue, C. F. Zhou, J. J. Feng, C. F. Ollivier G., H. H. Hu, J. Comput. Phys., 2006, 219(1), 47-67. https://doi.org/10.1016/j.jcp.2006.03.016
- P. Yuan, University of Pittsburgh, 2005.
- D. Zhang, K. Papadikis, S. Gu, Int. J. Multiph. Flow., 2014, 64, 11-18. https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.005
- C. Lv, P. Hao, Z. Yao, Y. Song, X. Zhang, F. He, Appl. Phys. Lett., 2013, 103(2), 021601. https://doi.org/10.1063/1.4812976
- T. Okada, G. Xie, M. Meeg, Electrochim. Acta, 1998, 43(14-15), 2141-2155. https://doi.org/10.1016/S0013-4686(97)10099-8
- L. You, H. Liu, Int. J. Heat Mass Transf., 2002, 45(11), 2277-2287. https://doi.org/10.1016/S0017-9310(01)00322-2
- Z. H. Wang, C. Y. Wang, K. S. Chen, J. Power Sources, 2001, 94(1), 40-50. https://doi.org/10.1016/S0378-7753(00)00662-5
Cited by
- Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges vol.13, pp.18, 2021, https://doi.org/10.3390/polym13183064