DOI QR코드

DOI QR Code

Theoretical Analysis of the Lock-on Range of a Man-portable Air Defense System Under Foggy Conditions with the Radiative-transfer Equation

복사전달방정식을 활용한 안개 조건에서의 휴대용 대공 유도미사일 Lock-on range에 대한 이론적 분석

  • Seok, In Cheol (Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University) ;
  • Lee, Chang Min (Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University) ;
  • Hahn, Jae W. (Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University)
  • 석인철 (연세대학교 기계공학과, 나노광자공학 연구실) ;
  • 이창민 (연세대학교 기계공학과, 나노광자공학 연구실) ;
  • 한재원 (연세대학교 기계공학과, 나노광자공학 연구실)
  • Received : 2018.11.12
  • Accepted : 2019.01.14
  • Published : 2019.02.25

Abstract

MANPADS (man-portable air defense system) is a counterweapon system against enemy aircraft, tracking the MWIR (mid-wavelength of infrared) signature of the plume. Under foggy conditions, however, multiple scattering phenomenon caused by the particles affects the MWIR transmittance, and the MANPADS detection performance. Therefore, in this study we analyzed the lock-on range of MANPADS with varying fog conditions and plume characteristics. To analyze the optical extinction properties and transmittance in fog, Mie scattering theory and analytic solution of the radiative-transfer equation are utilized. In addition, we used flare signature as an alternative MWIR light source. We confirmed that the lock-on range could be noticeably reduced under conditions of mist, and proportional to the flare temperature.

휴대용 대공유도 미사일(Man-Portable Air Defense System)은 플룸의 중적외선 신호를 추적하는 적 항공기의 대응무기체계이다. 안개 조건에서 입자들에 의한 다중 산란현상은 중적외선 파장에서의 투과율과 휴대용 대공유도 미사일 탐지성능에 영향을 준다. 그러므로 본 연구에서 다양한 안개조건과 플룸의 특성에 따른 휴대용 대공유도 미사일의 lock-on range를 분석한다. 안개 조건에서의 광학적 소멸특성과 투과율을 분석하기 위해 미산란(Mie scattering) 이론과 복사전달방정식의 분석적 해를 활용하였다. 뿐만 아니라 중적외선 대체광원으로서 섬광탄 화염 신호를 운용했다. 다양한 시정 및 화염 온도조건에서 분석된 lock-on range는 mist 조건에서 크게 감소하며, 화염 온도가 높아질수록 증가하는 것으로 확인하였다.

Keywords

KGHHBU_2019_v30n1_1_f0001.png 이미지

Fig. 1. Schematic of the entire set of geometrical parameters for the calculation of the RTE solution.

KGHHBU_2019_v30n1_1_f0002.png 이미지

Fig. 2. Calculated spectral radiant exitance of MWIR flare with varying temperature between 500 and 600 K.

KGHHBU_2019_v30n1_1_f0003.png 이미지

Fig. 3. Comparison of the calculated contrast spectrum obtained from BLL (dash line) and analytic solution (solid line) at 600 K in the fog. Visibility is 1 km and path length is 1 km.

KGHHBU_2019_v30n1_1_f0004.png 이미지

Fig. 4. Comparison of the calculated lock-on range with varying visibility and temperature. Flare temperatures are 500 K, 550 K, and 600 K.

Table 1. Classification of fog[15]

KGHHBU_2019_v30n1_1_t0001.png 이미지

Table 2. Particle radius with varying visibility[18-20]

KGHHBU_2019_v30n1_1_t0002.png 이미지

References

  1. M. Richardson, "The anatomy of the MANPAD," Proc. SPIE 6738, 1-11 (2007).
  2. S. P. Mahulikar, G. A. Rao, and P. S. Kolhe, "Infrared signatures of low-flying aircraft and their rear fuselage skin's emissivity optimization," J. Aircraft 43, 226-232 (2006). https://doi.org/10.2514/1.15365
  3. M. S. Ab-Rahman and M. R. Hassan, "Lock-on range of infrared heat seeker missile," in Proc. International Conference on Electrical Engineering and Informatics (Selangor, Malaysia, Aug. 2009), pp. 472-777.
  4. V. Dhar and Z. Khan, "Comparison of modeled atmosphere dependent range performance of long-wave and mid-wave IR imagers," Infrared Phys. Technol. 51, 520-527 (2008). https://doi.org/10.1016/j.infrared.2008.05.001
  5. N. Baranwal and S. P. Mahulikar, "Aircraft engine's infrared lock-on range due to back pressure penalty from choked convergent nozzle," Aerosp. Sci. Technol. 39, 377-383 (2014). https://doi.org/10.1016/j.ast.2014.09.020
  6. S. Chandrasekhar, Radiative transfer (Dover Publication, New York, USA, 1960).
  7. B. Lacaze, "Gaps of free-space optics beams with the Beer-Lambert law," Appl. Opt. 48, 2702-2706 (2009). https://doi.org/10.1364/AO.48.002702
  8. P. F. Liaparinos, I. S. Kandarakis, D. A. Cavouras, H. B. Delis, and G. S. Panayiotakis, "Modeling granular phosphor screens by Monte Carlo methods," Med. Phys. 33, 4503-4514 (2006).
  9. S. G. Narasimhan and S. K. Nayar, "Shedding light on the weather," in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Monona Terrace Convention Center Madison, USA, Jun. 2003), pp. 665-672.
  10. K. Han and J. W. Hahn, "Uncertainty analysis of the flame temperature determination based on atmospheric absorption effect with optical emission spectroscopy," Combust. Sci. Technol. 190, 2044-2060 (2018). https://doi.org/10.1080/00102202.2018.1488249
  11. W. Park, J. S. Won and H. S. Jung, "Retrieval of relative surface temperature from single-channel middle-infrared (MIR) images," Korean J. Remote Sens. 29, 95-104 (2013). https://doi.org/10.7780/kjrs.2013.29.1.9
  12. Y. Kim, H. J. Kwon, and S. H. Ahn, "Wavelength-band translation method of infrared image using temperature estimation," J. Korean Inst. Inf. Technol. 11, 35-43 (2013).
  13. H. Bathelt and F. Volk, "The ICT-thermodynamic code (ICT-code)," in Proc. 27th International Annual Conference of ICT (Fraunhofer-Institut fur Chemische Technologie, Germany, Jun. 1996), pp. 92.
  14. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, "The hitran molecular spectroscopic database and hawks (hitran atmospheric workstation): 1996 edition," J. Quant. Spectrosc. Radiat. Transf. 60, 665-710 (1998). https://doi.org/10.1016/S0022-4073(98)00078-8
  15. D. S. Deshpande and V. U. Kale, "Analysis of the atmospheric visibility restoration and fog attenuation using gray scale image," in Proc. Satellite Conference ICSTSD 2016 International Conference on Science and Technology for Sustainable Development (Kuala Lumpur, Malaysia, May. 2016), pp. 32-37.
  16. J. W. Cho, Y. S. Choi, and K. M. Jeong, "Visibility of thermal infrared camera under invisibility (dense Aerosol) environments," J. Inst. Control Robot. Syst. 23, 515-523 (2017). https://doi.org/10.5302/J.ICROS.2017.17.0013
  17. H. C. Van de Hulst, Light scattering by small particle, (Wiley, New York, USA, 1957).
  18. S. K. Nayar and S. G. Narasimhan, "Vision in bad weather," in Proc. IEEE International Conference Computer Vision (Corfu Holiday Palace, Greece, Sep. 1999), pp. 820-827.
  19. T. Elias, "Enhanced extinction of visible radiation due to hydrated aerosols in mist and fog," Atmos. Chem. Phys. 15, 6605-6623 (2015). https://doi.org/10.5194/acp-15-6605-2015
  20. C. E. Junge, Air chemistry and radioactivity (Academic Press, New York, USA, 1963).
  21. M. Grabner and V. Kvicera, "The wavelength dependent model of extinction in fog and haze for free space optical communication," Opt. Express 19, 3379-3386 (2011). https://doi.org/10.1364/OE.19.003379
  22. G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm to 200 ${\mu}m$ wavelength region," Appl. Opt. 12, 555-563 (1973). https://doi.org/10.1364/AO.12.000555
  23. T. Ohlemacher. "Bridging people and protest: social relays of protest groups against low-flying military jets in west germany." Soc. Probl. 43, 197-218 (1996). https://doi.org/10.1525/sp.1996.43.2.03x0205w
  24. M. Cavcar, The International standard atmosphere (ISA), (Anadolu University, Eskisehir, Turkey, 2000).